Academic Journals Database
Disseminating quality controlled scientific knowledge

Accumulations of genes for durable resistance to wheat leaf rust pathogen

ADD TO MY LIST
 
Author(s): Bošković Jelena | Bošković M. | Prijić Željana

Journal: Journal of Agricultural Sciences
ISSN 1450-8109

Volume: 53;
Issue: 3;
Start page: 163;
Date: 2008;
VIEW PDF   PDF DOWNLOAD PDF   Download PDF Original page

Keywords: hybrids of wheat | accumulations of genes' resistance | leaf rust pathogen

ABSTRACT
The individual use of single race-specific resistance genes with major phenotypic effects has rarely provided lasting resistance. However, breeding and combining or pyramiding of resistance genes into individual cultivars has had considerable success, particularly in situation where the pathogen does not reproduce sexually, as in the case of wheat leaf rust pathogen. Within international leaf rust of wheat investigations it was necessary, to create by breeding new resistant wheat lines to Puccinia recondita tritici for differentiation of pathogen population, as well as for sources of resistance in European-Mediterranean regions. In the beginning 18 donors of resistance had been selected after an extensive screening test of several International Rust Nurseries, to be crosses with recur- rent parents varieties Princ and Starke. These tests proved that in those lines were present new resistant genes. Eighth genetically different hybrids of the first back-cross had been selected and tested in the seedling stage with three international pathogen cultures (YU-13-19-1; H-13-9-1 and C2-13-Ar-3). Considerable influence of recurrent parent to the number of resistant genes in donors used was demonstrated. On the other side, it was established considerable influence of the pathogen culture to the number of resistant genes in donors used. The same crossing combinations tested with one pathogen culture results in presence of two resistance genes, but with another culture three or one resistant gene. In order to enhancement resistance and pyramiding genes in these hybrids, eight selected the most interesting lines have been crossed with only effective isogenic containing the strong genes Lr9, Lr19 and Lr24.The genetic analysis of twenty two crossing combinations have been realized by testing with three pathotypes of Puccinia recondita tritici ( Bg.s. 12/89; Is.w 8/89 and Chl.w. 14/89). On the base of different segregation ratios of all crossing combinations it was proved that no one of the resistant donors contained the strong resistant genes used. It means that our hybrid lines contained resistant genes from the donors and in addition three strong resistant genes Lr9, Lr19 and Lr24.
Why do you need a reservation system?      Save time & money - Smart Internet Solutions