Academic Journals Database
Disseminating quality controlled scientific knowledge

Activity of nanosized titania synthesized from thermal decomposition of titanium (IV) n-butoxide for the photocatalytic degradation of diuron

ADD TO MY LIST
 
Author(s): Jitlada Klongdee, Wansiri Petchkroh, Kosin Phuempoonsathaporn, Piyasan Praserthdam, Alisa S. Vangnai and Varong Pavarajarn

Journal: Science and Technology of Advanced Materials
ISSN 1468-6996

Volume: 6;
Issue: 3-4;
Start page: 290;
Date: 2005;
Original page

ABSTRACT
Nanoparticles of anatase titania were synthesized by the thermal decomposition of titanium (IV) n-butoxide in 1,4-butanediol. The powder obtained was characterized by various characterization techniques, such as XRD, BET, SEM and TEM, to confirm that it was a collection of single crystal anatase with particle size smaller than 15 nm. The synthesized titania was employed as catalyst for the photodegradation of diuron, a herbicide belonging to the phenylurea family, which has been considered as a biologically active pollutant in soil and water. Although diuron is chemically stable, degradation of diuron by photocatalyzed oxidation was found possible. The conversions achieved by titania prepared were in the range of 70–80% within 6 h of reaction, using standard UV lamps, while over 99% conversion was achieved under solar irradiation. The photocatalytic activity was compared with that of the Japanese Reference Catalyst (JRC-TIO-1) titania from the Catalysis Society of Japan. The synthesized titania exhibited higher rate and efficiency in diuron degradation than reference catalyst. The results from the investigations by controlling various reaction parameters, such as oxygen dissolved in the solution, diuron concentration, as well as light source, suggested that the enhanced photocatalytic activity was the result from higher crystallinity of the synthesized titania.
Why do you need a reservation system?      Affiliate Program