Academic Journals Database
Disseminating quality controlled scientific knowledge

Application of imputation methods to genomic selection in Chinese Holstein cattle

ADD TO MY LIST
 
Author(s): Weng Ziqing | Zhang Zhe | Ding Xiangdong | Fu Weixuan | Ma Peipei | Wang Chonglong | Zhang Qin

Journal: Journal of Animal Science and Biotechnology
ISSN 1674-9782

Volume: 3;
Issue: 1;
Start page: 6;
Date: 2012;
Original page

Keywords: Chinese Holstein Cows | dairy cattle | genomic selection | imputation methods | quality control | SNP

ABSTRACT
Abstract Missing genotypes are a common feature of high density SNP datasets obtained using SNP chip technology and this is likely to decrease the accuracy of genomic selection. This problem can be circumvented by imputing the missing genotypes with estimated genotypes. When implementing imputation, the criteria used for SNP data quality control and whether to perform imputation before or after data quality control need to consider. In this paper, we compared six strategies of imputation and quality control using different imputation methods, different quality control criteria and by changing the order of imputation and quality control, against a real dataset of milk production traits in Chinese Holstein cattle. The results demonstrated that, no matter what imputation method and quality control criteria were used, strategies with imputation before quality control performed better than strategies with imputation after quality control in terms of accuracy of genomic selection. The different imputation methods and quality control criteria did not significantly influence the accuracy of genomic selection. We concluded that performing imputation before quality control could increase the accuracy of genomic selection, especially when the rate of missing genotypes is high and the reference population is small.
Why do you need a reservation system?      Affiliate Program