Author(s): A. Ridgwell
Journal: Climate of the Past Discussions
ISSN 1814-9340
Volume: 2;
Issue: 6;
Start page: 1371;
Date: 2006;
VIEW PDF
DOWNLOAD PDF
Original page
ABSTRACT
Paleoceanographic evidence from the Southern Ocean reveals an apparent stark meridional divide in biogeochemical dynamics associated with the glacial-interglacial cycles of the late Neogene. South of the present-day position of the Antarctic Polar Front biogenic opal is generally much more abundant in sediments during interglacials compared to glacials. To the north, an anti-phased relationship is observed, with maximum opal abundance instead occurring during glacials. This antagonistic response of sedimentary properties is an important model validation target for testing hypotheses of glacial-interglacial change, particularly with respect to understanding the causes of the variability in atmospheric CO2. Here, I illustrate a time-dependent modelling approach to helping understand past climatic change by means of the generation of synthetic sediment core records. I find a close match between model-predicted and observed down-core changes in sedimentary opal content is achieved when changes in seasonal sea-ice extent is imposed, suggesting that the cryosphere is probably the primary driver of the striking features exhibited by the paleoceanographic record of this region.
Journal: Climate of the Past Discussions
ISSN 1814-9340
Volume: 2;
Issue: 6;
Start page: 1371;
Date: 2006;
VIEW PDF


ABSTRACT
Paleoceanographic evidence from the Southern Ocean reveals an apparent stark meridional divide in biogeochemical dynamics associated with the glacial-interglacial cycles of the late Neogene. South of the present-day position of the Antarctic Polar Front biogenic opal is generally much more abundant in sediments during interglacials compared to glacials. To the north, an anti-phased relationship is observed, with maximum opal abundance instead occurring during glacials. This antagonistic response of sedimentary properties is an important model validation target for testing hypotheses of glacial-interglacial change, particularly with respect to understanding the causes of the variability in atmospheric CO2. Here, I illustrate a time-dependent modelling approach to helping understand past climatic change by means of the generation of synthetic sediment core records. I find a close match between model-predicted and observed down-core changes in sedimentary opal content is achieved when changes in seasonal sea-ice extent is imposed, suggesting that the cryosphere is probably the primary driver of the striking features exhibited by the paleoceanographic record of this region.