Academic Journals Database
Disseminating quality controlled scientific knowledge

Artificial Neural Network for Location Estimation in Wireless Communication Systems

ADD TO MY LIST
 
Author(s): Chien-Sheng Chen

Journal: Sensors
ISSN 1424-8220

Volume: 12;
Issue: 3;
Start page: 2798;
Date: 2012;
Original page

Keywords: time of arrival (TOA) | angle of arrival (AOA) | non-line-of-sight (NLOS) | artificial neural networks (ANN)

ABSTRACT
In a wireless communication system, wireless location is the technique used to estimate the location of a mobile station (MS). To enhance the accuracy of MS location prediction, we propose a novel algorithm that utilizes time of arrival (TOA) measurements and the angle of arrival (AOA) information to locate MS when three base stations (BSs) are available. Artificial neural networks (ANN) are widely used techniques in various areas to overcome the problem of exclusive and nonlinear relationships. When the MS is heard by only three BSs, the proposed algorithm utilizes the intersections of three TOA circles (and the AOA line), based on various neural networks, to estimate the MS location in non-line-of-sight (NLOS) environments. Simulations were conducted to evaluate the performance of the algorithm for different NLOS error distributions. The numerical analysis and simulation results show that the proposed algorithms can obtain more precise location estimation under different NLOS environments.

Tango Jona
Tangokurs Rapperswil-Jona

     Save time & money - Smart Internet Solutions