Academic Journals Database
Disseminating quality controlled scientific knowledge

Bayesian estimation of a proportion under an asymmetric observation error Estimación bayesiana de una proporción bajo error de estimación asimétrico

ADD TO MY LIST
 
Author(s): Juan Carlos Correa Morales | Juan Carlos Salazar Uribe

Journal: Ingeniería y Ciencia
ISSN 1794-9165

Volume: 8;
Issue: 15;
Start page: 157;
Date: 2012;
Original page

Keywords: Estimación bayesiana | distribución binomial | probabilidad de respuesta falsa | sustancias sicoactivas.

ABSTRACT
The process of estimating a proportion that is associated with a sensitive question can yield responses that are not necessarily according to the reality.To reduce the probability o false response to this kind of sensitive questions some authors have proposed techniques of randomized response assuming asymmetric observation error. In this paper we present a generalization of the case where a symmetric error is assumed since this assumption could be unrealistic in practice. Under the assumption of an assymetric error the likelihood function is built. By doing this we intend that in practice the final user hasan alternative method to reduce the probability of false response. Assuming informative a priori distributions an expresion for the posterior distribution is found. Since this posterior distribution does not have a closed mathematical expression, it is neccesary to use the Gibbs sampler to carry out the estimation process. This technique is illustrated using real data about drug consumptions that were collected by the Oficina de Bienestar from the Universidad Nacional de Colombia at Medellín.El proceso de estimación de una proporción relacionada con una pregunta que puede ser altamente sensible para el encuestado, puede generar respuestas que no necesariamente coinciden con la realidad. Para reducir la probabilidad de respuestas falsas a este tipo de preguntas algunos autores han propuesto técnicas de respuesta aleatorizada asumiendo un error de observación asimétrico. En este artículo se presenta una generalización al caso donde se asume un error simétrico lo cual puede ser un supuesto poco realista en la práctica. Se deduce la función de verosimilitud bajo el supuesto de error de estimación asimétrico.Con esto se pretende que en la práctica se cuente con un método alternativo para reducir la probabilidad de respuestas falsas. Asumiendo distribuciones a priori informativas se encuentra una expresión para la distribución posterior. Puesto que esta última no tiene una expresión cerrada es necesario usar el muestreador de Gibbs en el proceso de estimación. Esta técnica se ilustra usando datos reales sobre consumo de drogas recolectados por la Oficina de Bienestar de la Universidad Nacional de Colombia, Sede Medellín.
Why do you need a reservation system?      Save time & money - Smart Internet Solutions