Academic Journals Database
Disseminating quality controlled scientific knowledge

A Benchmark for Banks’ Strategy in Online Presence – An Innovative Approach Based on Elements of Search Engine Optimization (SEO) and Machine Learning Techniques

ADD TO MY LIST
 
Author(s): Camelia Elena CIOLAC

Journal: Economia : Seria Management
ISSN 1454-0320

Volume: 14;
Issue: 1;
Start page: 91;
Date: 2011;
VIEW PDF   PDF DOWNLOAD PDF   Download PDF Original page

Keywords: SEO | Internet Website Popularity | banking industry | Machine Learning | K-Nearest Neighbors

ABSTRACT
This paper aims to offer a new decision tool to assist banks in evaluating their efficiency of Internet presence and in planning the IT investments towards gaining better Internet popularity. The methodology used in this paper goes beyond the simple website interface analysis and uses web crawling as a source for collecting website performance data and employed web technologies and servers. The paper complements this technical perspective with a proposed scorecard used to assess the efforts of banks in Internet presence that reflects the banks’ commitment to Internet as a distribution channel. An innovative approach based on Machine Learning Techniques, the K-Nearest Neighbor Algorithm, is proposed by the author to estimate the Internet Popularity that a bank is likely to achieve based on its size and efforts in Internet presence.
Affiliate Program     

Tango Jona
Tangokurs Rapperswil-Jona