Academic Journals Database
Disseminating quality controlled scientific knowledge

Comments on Rithidech, K.N.; et al. Lack of Genomic Instability in Bone Marrow Cells of SCID Mice Exposed Whole-Body to Low-Dose Radiation. Int. J. Environ. Res. Public Health 2013, 10, 1356–1377

Author(s): Keith Baverstock

Journal: International Journal of Environmental Research and Public Health
ISSN 1660-4601

Volume: 10;
Issue: 7;
Start page: 2732;
Date: 2013;
Original page

Keywords: n/a

I would like to take issue with Rithidech et al., authors of the paper entitled “Lack of genomic instability in mice at low doses” [1] who claim to have shown that their results on the measurement of late occurring chromosome aberrations after irradiation of SCID mice with X-rays show that lower doses (0.05 Gy) do not induce genomic instability. Their earlier work at higher doses (0.1 and 1.0 Gy) on the same strain of mouse indicated that de novo chromosome aberrations were detected at 6 months post-irradiation. This was taken, almost certainly correctly, to be an indication of the presence of genomic instability: late appearing chromosome damage, as the authors note, seems to be a reliable indicator of the process. The lack of de novo chromosome aberrations at 6 months post-irradiation, however, cannot be taken as evidence of the absence of genomic instability. In drawing their conclusion of a “lack of genomic instability ….” the authors have committed two category errors.
Save time & money - Smart Internet Solutions     

Tango Rapperswil
Tango Rapperswil