Academic Journals Database
Disseminating quality controlled scientific knowledge

Constructing a robust protein-protein interaction network by integrating multiple public databases

ADD TO MY LIST
 
Author(s): Martha Venkata-Swamy | Liu Zhichao | Guo Li | Su Zhenqiang | Ye Yanbin | Fang Hong | Ding Don | Tong Weida | Xu Xiaowei

Journal: BMC Bioinformatics
ISSN 1471-2105

Volume: 12;
Issue: Suppl 10;
Start page: S7;
Date: 2011;
Original page

ABSTRACT
Abstract Background Protein-protein interactions (PPIs) are a critical component for many underlying biological processes. A PPI network can provide insight into the mechanisms of these processes, as well as the relationships among different proteins and toxicants that are potentially involved in the processes. There are many PPI databases publicly available, each with a specific focus. The challenge is how to effectively combine their contents to generate a robust and biologically relevant PPI network. Methods In this study, seven public PPI databases, BioGRID, DIP, HPRD, IntAct, MINT, REACTOME, and SPIKE, were used to explore a powerful approach to combine multiple PPI databases for an integrated PPI network. We developed a novel method called k-votes to create seven different integrated networks by using values of k ranging from 1-7. Functional modules were mined by using SCAN, a Structural Clustering Algorithm for Networks. Overall module qualities were evaluated for each integrated network using the following statistical and biological measures: (1) modularity, (2) similarity-based modularity, (3) clustering score, and (4) enrichment. Results Each integrated human PPI network was constructed based on the number of votes (k) for a particular interaction from the committee of the original seven PPI databases. The performance of functional modules obtained by SCAN from each integrated network was evaluated. The optimal value for k was determined by the functional module analysis. Our results demonstrate that the k-votes method outperforms the traditional union approach in terms of both statistical significance and biological meaning. The best network is achieved at k=2, which is composed of interactions that are confirmed in at least two PPI databases. In contrast, the traditional union approach yields an integrated network that consists of all interactions of seven PPI databases, which might be subject to high false positives. Conclusions We determined that the k-votes method for constructing a robust PPI network by integrating multiple public databases outperforms previously reported approaches and that a value of k=2 provides the best results. The developed strategies for combining databases show promise in the advancement of network construction and modeling.
Save time & money - Smart Internet Solutions      Why do you need a reservation system?