Academic Journals Database
Disseminating quality controlled scientific knowledge

Cryogenic and non-cryogenic pool calcites reflect alternating permafrost and interglacial periods (Breitscheid-Erdbach Cave, Germany)

ADD TO MY LIST
 
Author(s): D. K. Richter | P. Meissner | A. Immenhauser | U. Schulte | I. Dorsten

Journal: The Cryosphere Discussions
ISSN 1994-0432

Volume: 4;
Issue: 3;
Start page: 1011;
Date: 2010;
VIEW PDF   PDF DOWNLOAD PDF   Download PDF Original page

ABSTRACT
Weichselian cryogenic calcites collected in what is referred to as the "Rätselhalle" of the Breitscheid-Erdbach Cave were structurally classified as rhombohedral crystal and spherulitic crystal sinters. The carbon and oxygen isotopic composition of these precipitates corresponds to those of known cryogenic calcites of slow genesis of Central European caves (δ13C=+0.6 and −7.3‰; δ18O=−6.9 to −18.0‰). The variant carbon and oxygen isotope pattern differing between different caves is attributed to cave specific ventilation. Particularly, Breitscheid cryogenic calcites reflect mean levels of cave ventilation. By petrographic and geochemical comparisons of Weichselian cryogenic calcite with recent to sub-recent precipitates as well as Weichselian non-cryogenic calcites of the same locality, a model for the precipitation of these calcites is proposed. While the recent and sub-recent pool-calcites isotopically match the geochemistry of interglacial speleothems (stalagmites, etc.), isotope ratios of Weichselian non-cryogenic pool-calcites reflect cooler conditions. Weichselian cryogenic calcites show a trend towards 18O-depleted values with higher carbon isotope ratios reflecting slow freezing of the precipitating solution. In essence, the isotope geochemistry of the Weichselian calcites reflects the climate history changing from overall initial permafrost (glacial) conditions to an interglacial and subsequently to renewed permafrost conditions. The last stage then grades into the present-day warm period. Judging from the data compiled here, the last permafrost stage is followed by only one interglacial. During this interglacial, the cave ice melted and non-cryogenic Weichselian calcite precipitates were deposited on the cave ground or on fallen blocks, respectively.

Tango Rapperswil
Tango Rapperswil

     Affiliate Program