Academic Journals Database
Disseminating quality controlled scientific knowledge

Differential gene expression in Schistosoma japonicum schistosomula from Wistar rats and BALB/c mice

Author(s): Peng Jinbiao | Han Hongxiao | Gobert Geoffrey | Hong Yang | Jiang Weibin | Wang Xinzhi | Fu Zhiqiang | Liu Jinming | Shi Yaojun | Lin Jiaojiao

Journal: Parasites & Vectors
ISSN 1756-3305

Volume: 4;
Issue: 1;
Start page: 155;
Date: 2011;
Original page

Abstract Background More than 46 species of mammals can be naturally infected with Schistosoma japonicum in the mainland of China. Mice are permissive and may act as the definitive host of the life cycle. In contrast, rats are less susceptible to S. japonicum infection, and are considered to provide an unsuitable micro-environment for parasite growth and development. Since little is known of what effects this micro-environment has on the parasite itself, we have in the present study utilised a S. japonicum oligonucleotide microarray to compare the gene expression differences of 10-day-old schistosomula maintained in Wistar rats with those maintained in BALB/c mice. Results In total 3,468 schistosome genes were found to be differentially expressed, of which the majority (3,335) were down-regulated (≤ 2 fold) and 133 were up-regulated (≥ 2 fold) in schistosomula from Wistar rats compared with those from BALB/c mice. Gene ontology (GO) analysis revealed that of the differentially expressed genes with already established functions or close homology to well characterized genes in another organisms, many are related to important biological functions or molecular processes. Among the genes that were down-regulated in schistosomula from Wistar rats, some were associated with metabolism, signal transduction and development. Of these genes related to metabolic processes, areas including translation, protein and amino acid phosphorylation, proteolysis, oxidoreductase activities, catalytic activities and hydrolase activities, were represented. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis of differential expressed genes indicated that of the 328 genes that had a specific KEGG pathway annotation, 324 were down-regulated and were mainly associated with metabolism, growth, redox pathway, oxidative phosphorylation, the cell cycle, ubiquitin-mediated proteolysis, protein export and the MAPK (mitogen-activated protein kinases) signaling pathway. Conclusions This work presents the first large scale gene expression study identifying the differences between schistosomula maintained in mice and those maintained in rats, and specifically highlights differential expression that may impact on the survival and development of the parasite within the definitive host. The research presented here provides valuable information for the better understanding of schistosome development and host-parasite interactions.
Save time & money - Smart Internet Solutions      Why do you need a reservation system?