Academic Journals Database
Disseminating quality controlled scientific knowledge

Discovery and implementation of transcriptional biomarkers of synthetic LXR agonists in peripheral blood cells

ADD TO MY LIST
 
Author(s): DiBlasio-Smith Elizabeth | Arai Maya | Quinet Elaine | Evans Mark | Kornaga Tad | Basso Michael | Chen Liang | Feingold Irene | Halpern Anita | Liu Qiang-Yuan | Nambi Ponnal | Savio Dawn | Wang Shuguang | Mounts William | Isler Jennifer | Slager Anna | Burczynski Michael | Dorner Andrew | LaVallie Edward

Journal: Journal of Translational Medicine
ISSN 1479-5876

Volume: 6;
Issue: 1;
Start page: 59;
Date: 2008;
Original page

ABSTRACT
Abstract Background LXRs (Liver X Receptor α and β) are nuclear receptors that act as ligand-activated transcription factors. LXR activation causes upregulation of genes involved in reverse cholesterol transport (RCT), including ABCA1 and ABCG1 transporters, in macrophage and intestine. Anti-atherosclerotic effects of synthetic LXR agonists in murine models suggest clinical utility for such compounds. Objective Blood markers of LXR agonist exposure/activity were sought to support clinical development of novel synthetic LXR modulators. Methods Transcript levels of LXR target genes ABCA1 and ABCG1 were measured using quantitative reverse transcriptase/polymerase chain reaction assays (qRT-PCR) in peripheral blood from mice and rats (following a single oral dose) and monkeys (following 7 daily oral doses) of synthetic LXR agonists. LXRα, LXRβ, ABCA1, and ABCG1 mRNA were measured by qRT-PCR in human peripheral blood mononuclear cells (PBMC), monocytes, T- and B-cells treated ex vivo with WAY-252623 (LXR-623), and protein levels in human PBMC were measured by Western blotting. ABCA1/G1 transcript levels in whole-blood RNA were measured using analytically validated assays in human subjects participating in a Phase 1 SAD (Single Ascending Dose) clinical study of LXR-623. Results A single oral dose of LXR agonists induced ABCA1 and ABCG1 transcription in rodent peripheral blood in a dose- and time-dependent manner. Induction of gene expression in rat peripheral blood correlated with spleen expression, suggesting LXR gene regulation in blood has the potential to function as a marker of tissue gene regulation. Transcriptional response to LXR agonist was confirmed in primates, where peripheral blood ABCA1 and ABCG1 levels increased in a dose-dependent manner following oral treatment with LXR-623. Human PBMC, monocytes, T- and B cells all expressed both LXRα and LXRβ, and all cell types significantly increased ABCA1 and ABCG1 expression upon ex vivo LXR-623 treatment. Peripheral blood from a representative human subject receiving a single oral dose of LXR-623 showed significant time-dependent increases in ABCA1 and ABCG1 transcription. Conclusion Peripheral blood cells express LXRα and LXRβ, and respond to LXR agonist treatment by time- and dose-dependently inducing LXR target genes. Transcript levels of LXR target genes in peripheral blood are relevant and useful biological indicators for clinical development of synthetic LXR modulators.

Tango Jona
Tangokurs Rapperswil-Jona

     Affiliate Program