Academic Journals Database
Disseminating quality controlled scientific knowledge

Down-regulation of estrogen receptor-alpha and rearranged during transfection tyrosine kinase is associated with withaferin a-induced apoptosis in MCF-7 breast cancer cells

ADD TO MY LIST
 
Author(s): Zhang Xuan | Mukerji Ridhwi | Samadi Abbas | Cohen Mark

Journal: BMC Complementary and Alternative Medicine
ISSN 1472-6882

Volume: 11;
Issue: 1;
Start page: 84;
Date: 2011;
Original page

ABSTRACT
Abstract Background Withaferin A (WA), a naturally occurring withanolide, induces apoptosis in both estrogen-responsive MCF-7 and estrogen-independent MDA-MB-231 breast cancer cell lines with higher sensitivity in MCF-7 cells, but the underlying mechanisms are not well defined. The purpose of this study was to determine the anti-cancer effects of WA in MCF-7 breast cancer cells and explore alterations in estrogen receptor alpha (ERα) and its associated molecules in vitro as novel mechanisms of WA action. Methods The effects of WA on MCF-7 viability and proliferation were evaluated by 3-(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay and trypan blue exclusion assays. Apoptosis was evaluated by Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) flow cytometry and Western blot analysis of poly (ADP-ribose) polymerase (PARP) cleavage. Cell cycle effects were analyzed by PI flow cytometry. Western blotting was also conducted to examine alterations in the expression of ERα and pathways that are associated with ERα function. Results WA resulted in growth inhibition and decreased viability in MCF-7 cells with an IC50 of 576 nM for 72 h. It also caused a dose- and time-dependent apoptosis and G2/M cell cycle arrest. WA-induced apoptosis was associated with down-regulation of ERα, REarranged during Transfection (RET) tyrosine kinase, and heat shock factor-1 (HSF1), as well as up-regulation of phosphorylated p38 mitogen-activated protein kinase (phospho-p38 MAPK), p53 and p21 protein expression. Co-treatment with protein synthesis inhibitor cycloheximide or proteasome inhibitor MG132 revealed that depletion of ERα by WA is post-translational, due to proteasome-dependent ERα degradation. Conclusions Taken together, down-regulation of ERα, RET, HSF1 and up-regulation of phospho-p38 MAPK, p53, p21 are involved in the pro-apoptotic and growth-inhibitory effects of WA in MCF-7 breast cancer cells in vitro. Down-regulation of ERα protein levels by WA is caused by proteasome-dependent ERα degradation.
Why do you need a reservation system?      Affiliate Program