Academic Journals Database
Disseminating quality controlled scientific knowledge

Effects of Gabaergic Phenols on Phospholipid Bilayers as Evaluated by 1H-NMR

Author(s): Gabriela N. Reiner | Leonardo Fernandes Fraceto | Eneida de Paula | María A. Perillo | Daniel A. García

Journal: Journal of Biomaterials and Nanobiotechnology
ISSN 2158-7027

Volume: 04;
Issue: 03;
Start page: 28;
Date: 2013;
Original page

Keywords: Phenols | Propofol | GABA-A Receptor | Membrane Interaction | 1H-RMN

The phenols propofol and thymol, and lately carvacrol, eugenol and chlorothymol, have been shown to act as positive allosteric modulators on GABAA receptor, which is the main inhibitory receptor of the central nervous system. GABAA receptor is an intrinsic membrane protein which activity may be affected by surface-active compounds and by physical changes in the membrane. Recently, we demonstrated that these phenols interacted with the lipid membrane phase, suggesting their anesthetic activity could be the combined result of their specific (with receptor proteins) as well as nonspecific (with surrounding lipid molecules) interaction modulating the supramolecular organization of the receptor environment. In the current study, by using 1H-NMR spectroscopy, we have investigated the effects of the insertion and the possible preferential location of the five phenol derivatives with GABAergic activity on EPC membranes. The results indicate that all compounds are able to insert in EPC phospholipid vesicles and to locate in the region between the polar group (choline molecule), the glycerol and the first atoms of the acyl chains, being the more lipophilic compounds (propofol and chlorothymol) that seem to prefer a deeper bilayer insertion. The location of the phenol molecules would reduce the repulsive forces among phospholipids head groups allowing closer molecular packing and finally diminishing the mobility of the hydrocarbon chains, as revealed by 1H spin relaxation times.  
Affiliate Program      Why do you need a reservation system?