Author(s): Yu-Huei Hong | Yu-Chen Tsai
Journal: Journal of Nanomaterials
ISSN 1687-4110
Volume: 2009;
Date: 2009;
Original page
ABSTRACT
PtRu nanoparticles with a diameter of 10–15 nm were electrodeposited within multiwalled carbon nanotube-Nafion (MWCNT-Nafion) nanocomposite. The formation of PtRu nanoparticles in MWCNT-Nafion nanocomposite was characterized by scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy. The electrocatalytic activity towards the methanol electrooxidation at PtRu-MWCNT-Nafion and Pt-MWCNT-Nafion nanocomposite-modified glassy carbon electrodes was investigated by cyclic voltammetry. The results indicated that the PtRu-MWCNT-Nafion nanocomposite was electrocatalytically more active than Pt-MWCNT-Nafion nanocomposite. The effect of atomic ratio of Pt : Ru on the electrocatalytic ability towards the methanol electrooxidation was investigated in order to achieve a high catalyst use. The PtRu bimetallic catalyst with 1 : 1 atomic ratio showed better electrocatalytic activity towards the methanol electrooxidation. The stability for the methanol electrooxidation at PtRu-MWCNT-Nafion nanocomposite modified was also investigated.
Journal: Journal of Nanomaterials
ISSN 1687-4110
Volume: 2009;
Date: 2009;
Original page
ABSTRACT
PtRu nanoparticles with a diameter of 10–15 nm were electrodeposited within multiwalled carbon nanotube-Nafion (MWCNT-Nafion) nanocomposite. The formation of PtRu nanoparticles in MWCNT-Nafion nanocomposite was characterized by scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy. The electrocatalytic activity towards the methanol electrooxidation at PtRu-MWCNT-Nafion and Pt-MWCNT-Nafion nanocomposite-modified glassy carbon electrodes was investigated by cyclic voltammetry. The results indicated that the PtRu-MWCNT-Nafion nanocomposite was electrocatalytically more active than Pt-MWCNT-Nafion nanocomposite. The effect of atomic ratio of Pt : Ru on the electrocatalytic ability towards the methanol electrooxidation was investigated in order to achieve a high catalyst use. The PtRu bimetallic catalyst with 1 : 1 atomic ratio showed better electrocatalytic activity towards the methanol electrooxidation. The stability for the methanol electrooxidation at PtRu-MWCNT-Nafion nanocomposite modified was also investigated.