Academic Journals Database
Disseminating quality controlled scientific knowledge

Elucidation mechanism of different biological responses to multi-walled carbon nanotubes using four cell lines

Author(s): Haniu H | Saito N | Matsuda Y | Kim YA | Park KC | Tsukahara T | Usui Y | Aoki K | Shimizu M | Ogihara N | Hara K | Takanashi S | Okamoto M | Ishigaki N | Nakamura K | Kato H

Journal: International Journal of Nanomedicine
ISSN 1176-9114

Volume: 2011;
Issue: default;
Start page: 3487;
Date: 2011;
Original page

Hisao Haniu1, Naoto Saito2, Yoshikazu Matsuda3, Yoong-Ahm Kim4, Ki Chul Park1, Tamotsu Tsukahara5, Yuki Usui6, Kaoru Aoki7, Masayuki Shimizu7, Nobuhide Ogihara7, Kazuo Hara7, Seiji Takanashi7, Masanori Okamoto7, Norio Ishigaki7, Koichi Nakamura7, Hiroyuki Kato71Institute of Carbon Science and Technology, Shinshu University, Matsumoto, Nagano, Japan; 2Department of Applied Physical Therapy, Shinshu University School of Health Sciences, Matsumoto, Nagano, Japan; 3Clinical Pharmacology Educational Center, Nihon Pharmaceutical University, Ina-machi, Saitama, Japan; 4Faculty of Engineering, Shinshu University, Nagano-shi, Nagano, Japan; 5Department of Integrative Physiology and Bio-System Control, Shinshu University School of Medicine, Matsumoto-shi, Nagano, Japan; 6Research Center for Exotic Nanocarbons, Shinshu University, Matsumoto, Nagano, Japan; 7Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto, Nagano, JapanAbstract: We examined differences in cellular responses to multi-walled carbon nanotubes (MWCNTs) using malignant pleural mesothelioma cells (MESO-1), bronchial epithelial cells (BEAS-2B), neuroblastoma cells (IMR-32), and monoblastic cells (THP-1), before and after differentiation. MESO-1, BEAS-2B and differentiated THP-1 cells actively endocytosed MWCNTs, resulting in cytotoxicity with lysosomal injury. However, cytotoxicity did not occur in IMR-32 or undifferentiated THP-1 cells. Both differentiated and undifferentiated THP-1 cells exhibited an inflammatory response. Carbon blacks were endocytosed by the same cell types without lysosomal damage and caused cytokine secretion, but they did not cause cytotoxicity. These results indicate that the cytotoxicity of MWCNTs requires not only cellular uptake but also lysosomal injury. Furthermore, it seems that membrane permeability or cytokine secretion without cytotoxicity results from several active mechanisms. Clarification of the cellular recognition mechanism for MWCNTs is important for developing safer MWCNTs.Keywords: multi-walled carbon nanotubes, cytotoxicity, endocytosis, cytokine secretion, reactive oxygen species

Tango Rapperswil
Tango Rapperswil

     Affiliate Program