Academic Journals Database
Disseminating quality controlled scientific knowledge

Estimadores de componentes de variância em delineamento de blocos aumentados com tratamentos novos de uma ou mais populações Estimators of variance components in the augmented block design with new treatments from one or more populations

ADD TO MY LIST
 
Author(s): João Batista Duarte | Roland Vencovsky | Carlos Tadeu dos Santos Dias

Journal: Pesquisa Agropecuária Brasileira
ISSN 0100-204X

Volume: 36;
Issue: 9;
Start page: 1155;
Date: 2001;
Original page

Keywords: modelo misto | melhoramento vegetal | seleção recorrente | autógamas | parâmetros genéticos | mixed model | plant breeding | recurrent selection | self-pollinated crop | genetic parameters

ABSTRACT
O objetivo do trabalho foi comparar, por meio de simulação, as estimativas de componentes de variância produzidas pelos métodos ANOVA (análise da variância), ML (máxima verossimilhança), REML (máxima verossimilhança restrita) e MIVQUE(0) (estimador quadrático não viesado de variância mínima), no delineamento de blocos aumentados com tratamentos adicionais (progênies) de uma ou mais procedências (cruzamentos). Os resultados indicaram superioridade relativa do método MIVQUE(0). O método ANOVA, embora não tendencioso, apresentou as estimativas de menor precisão. Os métodos de máxima verossimilhança, sobretudo ML, tenderam a subestimar a variância do erro experimental () e a superestimar as variâncias genotípicas (), em especial nos experimentos de menor tamanho (n0,5. Contudo, o método produziu as piores estimativas de variâncias genotípicas quando as progênies vieram de diferentes cruzamentos e os experimentos foram pequenos.This work compares by simulation estimates of variance components produced by the ANOVA (analysis of variance), ML (maximum likelihood), REML (restricted maximum likelihood), and MIVQUE(0) (minimum variance quadratic unbiased estimator) methods for augmented block design with additional treatments (progenies) stemming from one or more origins (crosses). Results showed the superiority of the MIVQUE(0) estimation. The ANOVA method, although unbiased, showed estimates with lower precision. The ML and REML methods produced downwards biased estimates for error variance (), and upwards biased estimates for genotypic variances (), particularly the ML method. Biases for the REML estimation became negligible when progenies were derived from a single cross, and experiments were of larger size with ratios />0.5. This method, however, provided the worst estimates for genotypic variances when progenies were derived from several crosses and the experiments were of small size (n
Affiliate Program      Why do you need a reservation system?