Academic Journals Database
Disseminating quality controlled scientific knowledge

An evaluation of LSU rDNA D1-D2 sequences for their use in species identification

ADD TO MY LIST
 
Author(s): Sonnenberg Rainer | Nolte Arne | Tautz Diethard

Journal: Frontiers in Zoology
ISSN 1742-9994

Volume: 4;
Issue: 1;
Start page: 6;
Date: 2007;
Original page

ABSTRACT
Abstract Background Identification of species via DNA sequences is the basis for DNA taxonomy and DNA barcoding. Currently there is a strong focus on using a mitochondrial marker for this purpose, in particular a fragment from the cytochrome oxidase I gene (COI). While there is ample evidence that this marker is indeed suitable across a broad taxonomic range to delineate species, it has also become clear that a complementation by a nuclear marker system could be advantageous. Ribosomal RNA genes could be suitable for this purpose, because of their global occurrence and the possibility to design universal primers. However, it has so far been assumed that these genes are too highly conserved to allow resolution at, or even beyond the species level. On the other hand, it is known that ribosomal gene regions harbour also highly divergent parts. We explore here the information content of two adjacent divergence regions of the large subunit ribosomal gene, the D1-D2 region. Results Universal primers were designed to amplify the D1-D2 region from all metazoa. We show that amplification products in the size between 800–1300 bp can be obtained across a broad range of animal taxa, provided some optimizations of the PCR procedure are implemented. Although the ribosomal genes occur in multiple copies in the genomes, we find generally very little intra-individual polymorphism (

Tango Rapperswil
Tango Rapperswil

     Affiliate Program