Academic Journals Database
Disseminating quality controlled scientific knowledge

External Second Gate, Fourier Transform Ion Mobility Spectrometry: Parametric Optimization for Detection of Weapons of Mass Destruction

ADD TO MY LIST
 
Author(s): Edward E. Tarver

Journal: Sensors
ISSN 1424-8220

Volume: 4;
Issue: 1;
Start page: 1;
Date: 2004;
Original page

Keywords: Ion mobility spectrometry | Fourier Transform ion mobility spectrometry | external second gate | Explosive samples

ABSTRACT
Abstract: Ion mobility spectrometry (IMS) is recognized as one of the most sensitive and robust techniques for the detection of narcotics, explosives and chemical warfare agents. IMS is widely used in forensic, military and security applications. Increasing threat of terrorist attacks, the proliferation of narcotics, Chemical Weapons Convention (CWC) treaty verification as well as humanitarian de-mining efforts have mandated that equal importance be placed on the time required to obtain results as well as the quality of the analytical data. [1] In this regard IMS is virtually unrivaled when both speed of response and sensitivity have to be considered. [2] The problem with conventional (signal averaging) IMS systems is the fixed duty cycle of the entrance gate that restricts to less than 1%, the number of available ions contributing to the measured signal. Furthermore, the signal averaging process incorporates scan-to-scan variations that degrade the spectral resolution contributing to misidentifications and false positives. With external second gate, Fourier Transform ion mobility spectrometry (FT-IMS) the entrance gate frequency is variable and can be altered in conjunction with other data acquisition parameters (scan time and sampling rate) to increase the spectral resolution to reduce false alarms and improve the sensitivity for early warning and contamination avoidance. In addition, with FT-IMS the entrance gate operates with a 50% duty cycle and so affords a seven-fold increase in sensitivity. Recent data on high explosives are presented to demonstrate the parametric optimization in sensitivity and resolution of our system.

Tango Rapperswil
Tango Rapperswil

     Save time & money - Smart Internet Solutions