Academic Journals Database
Disseminating quality controlled scientific knowledge

Fructose-enhanced reduction of bacterial growth on nanorough surfaces

ADD TO MY LIST
 
Author(s): Durmus NG | Taylor EN | Inci F | Kummer KM | Tarquinio KM | Webster TJ

Journal: International Journal of Nanomedicine
ISSN 1176-9114

Volume: 2012;
Issue: default;
Start page: 537;
Date: 2012;
Original page

ABSTRACT
Naside Gozde Durmus1, Erik N Taylor1, Fatih Inci3,4, Kim M Kummer1, Keiko M Tarquinio5, Thomas J Webster1,21School of Engineering, Brown University, Providence, RI, USA; 2Department of Orthopedics, Brown University, Providence, RI, USA; 3Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard-MIT Health Sciences and Technology, Harvard Medical School, MA, USA; 4Istanbul Technical University, Molecular Biology-Genetics and Biotechnology Program, Mobgam, Maslak, Istanbul, Turkey; 5Division of Pediatric Critical Care Medicine, Rhode Island Hospital, Providence, RI, USAAbstract: Patients on mechanical ventilators for extended periods of time often face the risk of developing ventilator-associated pneumonia. During the ventilation process, patients incapable of breathing are intubated with polyvinyl chloride (PVC) endotracheal tubes (ETTs). PVC ETTs provide surfaces where bacteria can attach and proliferate from the contaminated oropharyngeal space to the sterile bronchoalveolar area. To overcome this problem, ETTs can be coated with antimicrobial agents. However, such coatings may easily delaminate during use. Recently, it has been shown that changes in material topography at the nanometer level can provide antibacterial properties. In addition, some metabolites, such as fructose, have been found to increase the efficiency of antibiotics used to treat Staphylococcus aureus (S. aureus) infections. In this study, we combined the antibacterial effect of nanorough ETT topographies with sugar metabolites to decrease bacterial growth and biofilm formation on ETTs. We present for the first time that the presence of fructose on the nanorough surfaces decreases the number of planktonic S. aureus bacteria in the solution and biofilm formation on the surface after 24 hours. We thus envision that this method has the potential to impact the future of surface engineering of biomaterials leading to more successful clinical outcomes in terms of longer ETT lifetimes, minimized infections, and decreased antibiotic usage; all of which can decrease the presence of antibiotic resistant bacteria in the clinical setting.Keywords: antibacterial, medical device infection, ventilator-associated pneumonia, endotracheal tubes, nanoroughness, fructose, Staphylococcus aureus
Affiliate Program      Why do you need a reservation system?