Academic Journals Database
Disseminating quality controlled scientific knowledge

Gamma (γ) tocopherol upregulates peroxisome proliferator activated receptor (PPAR) gamma (γ) expression in SW 480 human colon cancer cell lines

ADD TO MY LIST
 
Author(s): Campbell Sharon | Stone William | Whaley Sarah | Qui Min | Krishnan Koyamangalath

Journal: BMC Cancer
ISSN 1471-2407

Volume: 3;
Issue: 1;
Start page: 25;
Date: 2003;
Original page

ABSTRACT
Abstract Background Tocopherols are lipid soluble antioxidants that exist as eight structurally different isoforms. The intake of γ-tocopherol is higher than α-tocopherol in the average US diet. The clinical results of the effects of vitamin E as a cancer preventive agent have been inconsistent. All published clinical trials with vitamin E have used α-tocopherol. Recent epidemiological, experimental and molecular studies suggest that γ-tocopherol may be a more potent chemopreventive form of vitamin E compared to the more-studied α-tocopherol. γ-Tocopherol exhibits differences in its ability to detoxify nitrogen dioxide, growth inhibitory effects on selected cancer cell lines, inhibition of neoplastic transformation in embryonic fibroblasts, and inhibition of cyclooxygenase-2 (COX-2) activity in macrophages and epithelial cells. Peroxisome proliferator activator receptor γ (PPARγ) is a promising molecular target for colon cancer prevention. Upregulation of PPARγ activity is anticarcinogenic through its effects on downstream genes that affect cellular proliferation and apoptosis. The thiazolidine class of drugs are powerful PPARγ ligands. Vitamin E has structural similarity to the thiazolidine, troglitazone. In this investigation, we tested the effects of both α and γ tocopherol on the expression of PPARγ mRNA and protein in SW 480 colon cancer cell lines. We also measured the intracellular concentrations of vitamin E in SW 480 colon cancer cell lines. Results We have discovered that the α and γ isoforms of vitamin E upregulate PPARγ mRNA and protein expression in the SW480 colon cancer cell lines. γ-Tocopherol is a better modulator of PPARγ expression than α-tocopherol at the concentrations tested. Intracellular concentrations increased as the vitamin E concentration added to the media was increased. Further, γ-tocopherol-treated cells have higher intracellular tocopherol concentrations than those treated with the same concentrations of α-tocopherol. Conclusion Our data suggest that both α and γ tocopherol can upregulate the expression of PPARγ which is considered an important molecular target for colon cancer chemoprevention. We show that the expression of PPARγ mRNA and protein are increased and these effects are more pronounced with γ-tocopherol. γ-Tocopherol's ability to upregulate PPARγ expression and achieve higher intracellular concentrations in the colonic tissue may be relevant to colon cancer prevention. We also show that the intracellular concentrations of γ-tocopherol are several fold higher than α-tocopherol. Further work on other colon cancer cell lines are required to quantitate differences in the ability of these forms of vitamin E to induce apoptosis, suppress cell proliferation and act as PPAR ligands as well as determine their effects in conjunction with other chemopreventive agents. Upregulation of PPARγ by the tocopherols and in particular by γ-tocopherol may have relevance not only to cancer prevention but also to the management of inflammatory and cardiovascular disorders.

Tango Jona
Tangokurs Rapperswil-Jona

     Save time & money - Smart Internet Solutions