Academic Journals Database
Disseminating quality controlled scientific knowledge

Graft copolymerization of acrylo–nitrile onto delignified native bamboo (Bambusa vulgaris) cellulosic and its utilization potential for heavy metal uptake from aqueous medium


Journal: Chemical Industry and Chemical Engineering Quarterly
ISSN 1451-9372

Volume: 17;
Issue: 2;
Start page: 133;
Date: 2011;
VIEW PDF   PDF DOWNLOAD PDF   Download PDF Original page

Keywords: bamboo cellulosic | acrylonitrile | grafting and copolymers

Graft polymerization of acrylonitrile onto delingnified cellulosic material obtained from Nigeria grown bamboo (Bambusa vulgaris) could be initiated by a ceric ammonium nitrate redox system. Optimization of grafting of acrylonitrile onto cellulosic material was performed by varying the reaction conditions, such as the duration of soaking of cellulosic material in ceric ammonium nitrate solution, concentration of ceric ammonium nitrate solution, polymerization time, temperature of reaction, and acrylonitrile concentration and saponification time, in order to study their influence on percent grafting yield and grafting efficiency. The resulting cellulosic-g-polyacrylonitrile (PAN) copolymers were fractionated by extraction at 33 C with N,N’-dimethylformamide. Fractions were characterized by determining both the % add-on and the free polymer. Saponification of grafted copolymer was done by reaction with sodium hydroxide followed by methanol precipitation. The absorbent polymer so produced gave fair water retention values. The optimum reaction conditions obtained were: 20 mmol/L ceric ammonium nitrate solution in 1% nitric acid, soaking duration of 0.5 h at 40 C for a polymerization time of 2 h and saponification time of 3 h. The percent grafting was 167.89%, grafting efficiency was 93.52% and water retention value was 389 g/g. The grafting was confirmed using FTIR. Sorption of different metal ions in the mixture, e.g. Cr, Mn, Ni, Cu and Pb, by grafted cellulosic and the hydrogel was also investigated. Hydrolysis increases the sorption affinity of grafted cellulose toward water and metal ions.

Tango Jona
Tangokurs Rapperswil-Jona

     Affiliate Program