Academic Journals Database
Disseminating quality controlled scientific knowledge

Influence of geometric and hydro-dynamic parameters of injector on calculation of spray characteristics of diesel engines

Author(s): Filipović Ivan | Pikula Boran | Bibić Dževad

Journal: Thermal Science
ISSN 0354-9836

Volume: 15;
Issue: 4;
Start page: 1095;
Date: 2011;
VIEW PDF   PDF DOWNLOAD PDF   Download PDF Original page

Keywords: injector | spray | diesel fuel

The main role in air/fuel mixture formation at the IC diesel engines has the energy introduced by fuel into the IC engine that is the characteristics of spraying fuel into the combustion chamber. The characteristic can be defined by the spray length, the spray cone angle, the physical and the chemical structure of fuel spray by different sections. Having in mind very complex experimental setups for researching in this field, the mentioned characteristics are mostly analyzed by calculations. There are two methods in the literature, the first based on use of the semi-empirical expressions (correlations) and the second, the calculations of spray characteristics by use of very complex mathematical methods. The second method is dominant in the modern literature. The main disadvantage of the calculation methods is a correct definition of real state at the end of the nozzle orifice (real boundary conditions). The majority of the researchers in this field use most frequently the coefficient of total losses inside the injector. This coefficient depends on injector design, as well as depends on the level of fuel energy and fuel energy transformation along the injector. Having in mind the importance of the real boundary conditions, the complex methods for calculation of the fuel spray characteristics should have the calculation of fuel flows inside the injector and the calculation of spray characteristics together. This approach is a very complex numerical problem and there are no existing computer programs with satisfactory calculation results. Analysis of spray characteristics by use of the semi-empirical expressions (correlations) is presented in this paper. The special attention is dedicated to the analysis of the constant in the semi-empirical expressions and influence parameters on this constant. Also, the method for definition of realistic boundary condition at the end of the nozzle orifice is presented in the paper. By use of this method completely avoid a use of the coefficient of total losses inside the injector. At the same time, semi-empirical expressions have the universal constant that does not depend on the injector design.

Tango Jona
Tangokurs Rapperswil-Jona

     Save time & money - Smart Internet Solutions