Academic Journals Database
Disseminating quality controlled scientific knowledge

Karst development on carbonate islands

Author(s): Mylroie,J.E. | Carew,J.L.

Journal: Speleogenesis and Evolution of Karst Aquifers
ISSN 1814-294X

Volume: 1;
Issue: 2;
Start page: 21;
Date: 2003;
Original page

Keywords: karst on carbonate islands | speleogenesis in coastal and oceanic settings

Karst development on carbonate platforms occurs continuously on emergent portions of the platform. Surficial karst processes produce an irregular pitted and etched surface, or epikarst. The karst surface becomes mantled with soil, which may eventually result in the production of a resistant micritic paleosol. The epikarst transmits surface water into vadose pit caves, which in turn deliver their water to a diffuse-flow aquifer. These pit caves form within a 100,000 yr time frame. On islands with a relatively thin carbonate cover over insoluble rock, vadose flow perched at the contact of carbonate rock with insoluble rock results in the lateral growth of vadose voids along the contact, creating large collapse chambers that may later stope to the surface. Carbonate islands record successive sequences of paleosols (platform emergence) and carbonate sedimentation (platform submergence). The appropriate interpretation of paleosols as past exposure surfaces is difficult, because carbonate deposition is not distributed uniformly, paleosol material is commonly transported into vadose and phreatic voids at depth, and micritized horizons similar in appearance to paleosols can develop within existing carbonates. On carbonate islands, large dissolution voids called flank margin caves form preferentially in the discharging margin of the freshwater lens from the effects that result from fresh-water/salt-water mixing. Similarly, smaller dissolution voids also develop at the top of the lens where vadose and phreatic fresh-waters mix. Independent of fluid mixing, oxidation of organic carbon and oxidation/reduction reactions involving sulfur can produce acids that play an important role in phreatic dissolution. This enhanced dissolution can produce caves in fresh-water lenses of very small size in less than 15,000 yr. Because dissolution voids develop at discrete horizons, they provide evidence of past sea-level positions. The glacio-eustatic sea-level changes of the Quaternary have overprinted the dissolutional record of many carbonate islands with multiple episodes of vadose, fresh-water phreatic, mixing zone, and marine phreatic conditions. This record is further complicated by collapse of caves, which produces upwardly prograding voids whose current position does not correlate with past sea level positions. The location and type of porosity development on emergent carbonate platforms depends on the degree of platform exposure, climate, carbonate lithology, and rate of sea-level change. Slow, steady, partial transgression or regression will result in migration of the site of phreatic void production as the fresh-water lens changes elevation and moves laterally in response to sea-level change. The result can be a continuum of voids that may later lead to development solution-collapse breccias over an extended area.

Tango Jona
Tangokurs Rapperswil-Jona

     Affiliate Program