Academic Journals Database
Disseminating quality controlled scientific knowledge

A mechanistic model of global soil nitric oxide emissions: implementation and space based-constraints

ADD TO MY LIST
 
Author(s): R. C. Hudman | N. E. Moore | R. V. Martin | A. R. Russell | A. K. Mebust | L. C. Valin | R. C. Cohen

Journal: Atmospheric Chemistry and Physics Discussions
ISSN 1680-7367

Volume: 12;
Issue: 2;
Start page: 3555;
Date: 2012;
VIEW PDF   PDF DOWNLOAD PDF   Download PDF Original page

ABSTRACT
Soil emissions have been identified as a major source (~15%) of global nitrogen oxide (NOx) emissions. Parameterizations of soil NOx emissions (SNOx) for use in the current generation of chemical transport models were designed to capture mean seasonal behaviour. These parameterizations do not, however, respond quantitatively to the meteorological triggers that result in pulsed SNOx as are widely observed. Here we present a new mechanistic parameterization of SNOx implemented into a global chemical transport model (GEOS-Chem). The parameterization represents available nitrogen (N) in soils using biome specific emission factors, online wet- and dry-deposition of N as well as fertilizer and manure N derived from a spatially explicit dataset distributed using seasonality derived from data obtained by the Moderate Resolution Imaging Spectrometer. Moreover, it represents the functional form of emissions derived from point measurements and ecosystem scale experiments including pulsing following soil wetting by rain or irrigation, and emissions that are a smooth function of soil moisture. This parameterization yields global above-soil SNOx of 10.7 Tg N yr−1, including 1.8 Tg N yr−1 from fertilizer N input (0.68% of applied N) and 0.5 Tg N yr−1 from atmospheric N deposition. Over the United States Great Plains, SNOx are predicted to comprise 15–40% of the tropospheric NO2 column and increase column variability by a factor of 2–4 during the summer months due to chemical fertilizer application and warm temperatures. SNOx enhancements of 50–80% of the simulated NO2 column are predicted over the African Sahel during the monsoon onset (April–June). In this region the day-to-day variability of column NO2 is increased by a factor of 5 due to pulsed-N emissions. We evaluate the model by comparison to observations of the NO2 column from the OMI instrument. We find the model is able to reproduce observations of pulsed-N induced interannual variability over the US Great Plains. We also show that the OMI mean (median) NO2 on the overpass following first rainfall over the Sahel is 49% (23%) higher than in the five days preceding. The measured NO2 on the day after rainfall is still 23% (5%) higher, providing a direct measure of the pulse's decay time of 1–2 days. This is consistent with the pulsing representation used in our parameterization and much shorter than 5–14 day pulse decay length used in current models.
Save time & money - Smart Internet Solutions      Why do you need a reservation system?