Academic Journals Database
Disseminating quality controlled scientific knowledge

Modern and ancient red fox (Vulpes vulpes) in Europe show an unusual lack of geographical and temporal structuring, and differing responses within the carnivores to historical climatic change

ADD TO MY LIST
 
Author(s): Teacher Amber | Thomas Jessica | Barnes Ian

Journal: BMC Evolutionary Biology
ISSN 1471-2148

Volume: 11;
Issue: 1;
Start page: 214;
Date: 2011;
Original page

Keywords: ancient DNA | glaciation | climate change | adaptation | carnivore

ABSTRACT
Abstract Background Despite phylogeographical patterns being well characterised in a large number of species, and generalised patterns emerging, the carnivores do not all appear to show consistent trends. While some species tend to fit with standard theoretical phylogeographic expectations (e.g. bears), others show little obvious modern phylogeographic structure (e.g. wolves). In this study we briefly review these studies, and present a new phylogeographical study of the red fox (Vulpes vulpes) throughout Europe, using a combination of ancient DNA sequences obtained from museum specimens, and modern sequences collated from GenBank. We used cytochrome b (250 bp) and the mitochondrial control region (268 bp) to elucidate both current and historical phylogeographical patterning. Results We found evidence for slight isolation by distance in modern populations, as well as differentiation associated with time, both of which can likely be attributed to random genetic drift. Despite high sequence diversity (11.2% cytochrome b, 16.4% control region), no evidence for spatial structure (from Bayesian trees) is found either in modern samples or ancient samples for either gene, and Bayesian skyline plots suggested little change in the effective population size over the past 40,000 years. Conclusions It is probable that the high dispersal ability and adaptability of the red fox has contributed to the lack of observable differentiation, which appears to have remained consistent over tens of thousands of years. Generalised patterns of how animals are thought to have responded to historical climatic change are not necessarily valid for all species, and so understanding the differences between species will be critical for predicting how species will be affected by future climatic change.
Affiliate Program     

Tango Rapperswil
Tango Rapperswil