Academic Journals Database
Disseminating quality controlled scientific knowledge

Molecular architecture of the fruit fly's airway epithelial immune system

Author(s): Wagner Christina | Isermann Kerstin | Fehrenbach Heinz | Roeder Thomas

Journal: BMC Genomics
ISSN 1471-2164

Volume: 9;
Issue: 1;
Start page: 446;
Date: 2008;
Original page

Abstract Background Airway epithelial cells not only constitute a physical barrier, but also the first line of defence against airborne pathogens. At the same time, they are constantly exposed to reactive oxygen species. Therefore, airway epithelia cells have to possess a sophisticated innate immune system and a molecular armamentarium to detoxify reactive oxygen species. It has become apparent that deregulation of epithelial innate immunity is a major reason for the development of chronic inflammatory lung diseases. To elucidate the molecular architecture of the innate immune system of airway epithelial cells, we choose the fruit fly Drosophila melanogaster as a model, because it has the simplest type of airways, consisting of epithelial cells only. Elucidating the structure of the innate immune system of this "airway epithelial cell culture" might enable us to understand why deregulatory processes in innate immune signalling cascades lead to long lasting inflammatory events. Results All airway epithelial cells of the fruit fly are able to launch an immune response. They contain only one functional signal transduction pathway that converges onto NF-κB factors, namely the IMD-pathway, which is homologous to the TNF-α receptor pathway. Although vital parts of the Toll-pathway are missing, dorsal and dif, the NF-κB factors dedicated to this signalling system, are present. Other pathways involved in immune regulation, such as the JNK- and the JAK/STAT-pathway, are completely functional in these cells. In addition, most peptidoglycan recognition proteins, representing the almost complete collection of pattern recognition receptors, are part of the epithelial cells equipment. Potential effector molecules are different antimicrobial peptides and lysozymes, but also transferrin that can inhibit bacterial growth through iron-depletion. Reactive oxygen species can be inactivated through the almost complete armamentarium of enzymatic antioxidants that has the fly to its disposal. Conclusion The innate immune system of the fly's airway epithelium has a very peculiar organization. A great variety of pattern recognition receptors as well as of potential effector molecules are conspicuous, whereas signalling presumably occurs through a single NF-κB activating pathway. This architecture will allow reacting if confronted with different bacterial or fungal elicitors by activation of a multitude of effectors.

Tango Jona
Tangokurs Rapperswil-Jona

     Save time & money - Smart Internet Solutions