Academic Journals Database
Disseminating quality controlled scientific knowledge

A New Metric for Measuring Relatedness of ScientificPapers Based on Non-Textual Features

ADD TO MY LIST
 
Author(s): Fattane Zarrinkalam | Mohsen Kahani

Journal: Intelligent Information Management
ISSN 2160-5912

Volume: 04;
Issue: 04;
Start page: 99;
Date: 2012;
Original page

Keywords: Relatedness Measure | Citation Recommendation | Digital Library

ABSTRACT
Measuring relatedness of two papers is an issue which arises in many applications, e.g., recommendation, clustering and classification of papers. In this paper, a digital library is modeled as a directed graph; each node representing three different types of entities: papers, authors, and venues, and each edge representing relationships between these entities. Based on this graph model, six different types of relations are considered between two papers, and a new metric is proposed for evaluating relatedness of the papers. This metric only focuses on the relational features, and does not consider textual features. We have used it in combination with a textual similarity measure in the context of citation recommendation systems. Experimental results show that using this metric can successfully improve the quality of the recommendations.
Why do you need a reservation system?      Affiliate Program