Academic Journals Database
Disseminating quality controlled scientific knowledge

A novel folate-modified self-microemulsifying drug delivery system of curcumin for colon targeting

ADD TO MY LIST
 
Author(s): Zhang L | Zhu WW | Yang CF | Guo HX | Yu AH | Ji JB | Gao Y | Sun M | Zhai GX

Journal: International Journal of Nanomedicine
ISSN 1176-9114

Volume: 2012;
Issue: default;
Start page: 151;
Date: 2012;
Original page

ABSTRACT
Lin Zhang1*, Weiwei Zhu2*, Chunfen Yang1, Hongxia Guo1, Aihua Yu1, Jianbo Ji3, Yan Gao1, Min Sun1, Guangxi Zhai11Department of Pharmaceutical Engineering, College of Pharmacy, Shandong University, Jinan; 2Department of Pharmacy, Yantai Yuhuangding Hospital, Yantai; 3Department of Pharmacology, College of Pharmacy, Shandong University, Jinan, China*These authors contributed equally to the workBackground: The objective of this study was to prepare, characterize, and evaluate a folate-modified self-microemulsifying drug delivery system (FSMEDDS) with the aim to improve the solubility of curcumin and its delivery to the colon, facilitating endocytosis of FSMEDDS mediated by folate receptors on colon cancer cells.Methods: Ternary phase diagrams were constructed in order to obtain the most efficient self-emulsification region, and the formulation of curcumin-loaded SMEDDS was optimized by a simplex lattice experiment design. Then, three lipophilic folate derivatives (folate-polyethylene glycol-distearoylphosphatidylethanolamine, folate-polyethylene glycol-cholesteryl hemisuccinate, and folate-polyethylene glycol-cholesterol) used as a surfactant were added to curcumin-loaded SMEDDS formulations. An in situ colon perfusion method in rats was used to optimize the formulation of FSMEDDS. Curcumin-loaded FSMEDDS was then filled into colon-targeted capsules and the in vitro release was investigated. Cytotoxicity studies and cellular uptake studies was used in this research.Results: The optimal formulation of FSMEDDS obtained with the established in situ colon perfusion method in rats was comprised of 57.5% Cremophor® EL, 32.5% Transcutol® HP, 10% Capryol™ 90, and a small amount of folate-polyethylene glycol-cholesteryl hemisuccinate (the weight ratio of folate materials to Cremophor EL was 1:100). The in vitro release results indicated that the obtained formulation of curcumin could reach the colon efficiently and release the drug immediately. Cellular uptake studies analyzed with fluorescence microscopy and flow cytometry indicated that the FSMEDDS formulation could efficiently bind with the folate receptors on the surface of positive folate receptors cell lines. In addition, FSMEDDS showed greater cytotoxicity than SMEDDS in the above two cells.Conclusion: FSMEDDS-filled colon-targeted capsules are a potential carrier for colon delivery of curcumin.Keywords: curcumin, SMEDDS, folate receptor, colon targeting

Tango Rapperswil
Tango Rapperswil

     Save time & money - Smart Internet Solutions