Academic Journals Database
Disseminating quality controlled scientific knowledge

Numerical Simulations of a Prechamber Autoignition Engine Operating on Natural Gas

ADD TO MY LIST
 
Author(s): Stefan Heyne | Grégory Millot | Daniel Favrat

Journal: International Journal of Thermodynamics
ISSN 1301-9724

Volume: 14;
Issue: 2;
Start page: 43;
Date: 2011;
Original page

Keywords: Cogeneration | prechamber | autoignition | numerical simulation

ABSTRACT
At our laboratory extensive research has been conducted on the conversion of conventional Diesel cogeneration engines to operation on natural gas and biogas. In the framework of this research, a numerical simulation of a prechamber autoignition gas engine has been performed based on an experimental test case. With a simplified finite-rate/eddy-dissipation model for the combustion of natural gas, it was possible to properly reproduce the experiment considering the combustion duration, ignition timing and overall energy balance. A modification of the original cylindrical-conical prechamber geometry to a simpler cylindrical one was tested with the simulation model. The influence of burnt gases inside the prechamber was assessed simulating the mixture formation inside the prechamber. The simulations showed little effect of taking into account the non-homogeneities in the gas phase on the combustion duration. The new cylindrical geometry envisaged did not show any improvement in the combustion homogeneity inside the prechamber and its volume (limited by the real engine geometry) is in fact not sufficient to properly ignite the main chamber according to the simulations. The model can be used to further guide design modifications of the prechamber engine to improve performance.
Why do you need a reservation system?      Save time & money - Smart Internet Solutions