Academic Journals Database
Disseminating quality controlled scientific knowledge

Oceanic Dimethyl Sulfide Emission and New Particle Formation around the Coast of Antarctica: A Modeling Study of Seasonal Variations and Comparison with Measurements

Author(s): Fangqun Yu | Gan Luo

Journal: Atmosphere
ISSN 2073-4433

Volume: 1;
Issue: 1;
Start page: 34;
Date: 2010;
Original page

Keywords: DMS emission | nucleation | southern ocean | seasonal variations | CCN

A clear understanding of new particle formation processes in remote oceans is critical for properly assessing the role of oceanic dimethyl sulfide (DMS) emission on the Earth’s climate and associated climate feedback processes. Almost free from anthropogenic pollutants and leafed plants, the Antarctic continent and surrounding oceans are unique regions for studying the lifecycle of natural sulfate aerosols. Here we investigate the well-recognized seasonal variations of new particle formation around Antarctic coastal areas with a recently developed global size-resolved aerosol model. Our simulations indicate that enhanced DMS emission and photochemistry during the austral summer season lead to significant new particle formation via ion-mediated nucleation (IMN) and much higher particle number concentrations over Antarctica and surrounding oceans. By comparing predicted condensation nuclei larger than 10 nm (CN10) during a three-year period (2005–2007) with the long-period continuous CN10 measurements at the German Antarctic station Neumayer, we show that the model captures the absolute values of monthly mean CN10 (within a factor 2–3) as well as their seasonal variations. Our simulations confirm that the observed Antarctic CN10 and cloud condensation nuclei (CCN) seasonal variations are due to the formation of secondary particles during the austral summer. From the austral winter to summer, the zonally averaged CN10 and CCN in the lower troposphere over Antarctica increase by a factor of ~4–6 and ~2–4, respectively. This study appears to show that the H2SO4-H2O IMN mechanism is able to account for the new particle formation frequently observed in the Antarctica region during the austral summer.
Save time & money - Smart Internet Solutions      Why do you need a reservation system?