Academic Journals Database
Disseminating quality controlled scientific knowledge

The physical basis of ionospheric electrodynamics

ADD TO MY LIST
 
Author(s): V. M. Vasyliƫnas

Journal: Annales Geophysicae
ISSN 0992-7689

Volume: 30;
Issue: 2;
Start page: 357;
Date: 2012;
VIEW PDF   PDF DOWNLOAD PDF   Download PDF Original page

ABSTRACT
The conventional equations of ionospheric electrodynamics, highly succesful in modeling observed phenomena on sufficiently long time scales, can be derived rigorously from the complete plasma and Maxwell's equations, provided that appropriate limits and approximations are assumed. Under the assumption that a quasi-steady-state equilibrium (neglecting local dynamical terms and considering only slow time variations of external or aeronomic-process origin) exists, the conventional equations specify how the various quantities must be related numerically. Questions about how the quantities are related causally or how the stress equilibrium is established and on what time scales are not anwered by the conventional equations but require the complete plasma and Maxwell's equations, and these lead to a picture of the underlying physical processes that can be rather different from the commonly presented intuitive or ad hoc explanations. Particular instances include the nature of the ionospheric electric current, the relation between electric field and plasma bulk flow, and the interrelationships among various quantities of neutral-wind dynamo.
Affiliate Program      Why do you need a reservation system?