Academic Journals Database
Disseminating quality controlled scientific knowledge

Plasma proteome analysis in HTLV-1-associated myelopathy/tropical spastic paraparesis

Author(s): Kirk Paul | Witkover Aviva | Courtney Alan | Lewin Alexandra | Wait Robin | Stumpf Michael | Richardson Sylvia | Taylor Graham | Bangham Charles

Journal: Retrovirology
ISSN 1742-4690

Volume: 8;
Issue: 1;
Start page: 81;
Date: 2011;
Original page

Abstract Background Human T lymphotropic virus Type 1 (HTLV-1) causes a chronic inflammatory disease of the central nervous system known as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM) which resembles chronic spinal forms of multiple sclerosis (MS). The pathogenesis of HAM remains uncertain. To aid in the differential diagnosis of HAM and to identify pathogenetic mechanisms, we analysed the plasma proteome in asymptomatic HTLV-1 carriers (ACs), patients with HAM, uninfected controls, and patients with MS. We used surface-enhanced laser desorption-ionization (SELDI) mass spectrometry to analyse the plasma proteome in 68 HTLV-1-infected individuals (in two non-overlapping sets, each comprising 17 patients with HAM and 17 ACs), 16 uninfected controls, and 11 patients with secondary progressive MS. Candidate biomarkers were identified by tandem Q-TOF mass spectrometry. Results The concentrations of three plasma proteins - high [β2-microglobulin], high [Calgranulin B], and low [apolipoprotein A2] - were specifically associated with HAM, independently of proviral load. The plasma [β2-microglobulin] was positively correlated with disease severity. Conclusions The results indicate that monocytes are activated by contact with activated endothelium in HAM. Using β2-microglobulin and Calgranulin B alone we derive a diagnostic algorithm that correctly classified the disease status (presence or absence of HAM) in 81% of HTLV-1-infected subjects in the cohort.
Affiliate Program     

Tango Jona
Tangokurs Rapperswil-Jona