Academic Journals Database
Disseminating quality controlled scientific knowledge

Quantum Measurement Theory in Gravitational-Wave Detectors

ADD TO MY LIST
 
Author(s): Stefan L. Danilishin | Farid Ya. Khalili

Journal: Living Reviews in Relativity
ISSN 1433-8351

Volume: 15;
Start page: 5;
Date: 2012;
Original page

Keywords: gravitational-wave detectors | quantum non-demolition measurement | quantum speed meter | back-action evasion | squeezed light | quantum noise | quantum measurement theory | standard quantum limit | optical rigidity | filter cavities

ABSTRACT
The fast progress in improving the sensitivity of the gravitational-wave detectors, we all have witnessed in the recent years, has propelled the scientific community to the point at which quantum behavior of such immense measurement devices as kilometer-long interferometers starts to matter. The time when their sensitivity will be mainly limited by the quantum noise of light is around the corner, and finding ways to reduce it will become a necessity. Therefore, the primary goal we pursued in this review was to familiarize a broad spectrum of readers with the theory of quantum measurements in the very form it finds application in the area of gravitational-wave detection. We focus on how quantum noise arises in gravitational-wave interferometers and what limitations it imposes on the achievable sensitivity. We start from the very basic concepts and gradually advance to the general linear quantum measurement theory and its application to the calculation of quantum noise in the contemporary and planned interferometric detectors of gravitational radiation of the first and second generation. Special attention is paid to the concept of the Standard Quantum Limit and the methods of its surmounting.
Why do you need a reservation system?      Affiliate Program