Academic Journals Database
Disseminating quality controlled scientific knowledge

Robustness effect of gap junctions between Golgi cells on cerebellar cortex oscillations

ADD TO MY LIST
 
Author(s): Simões de Souza Fabio M | De Schutter Erik

Journal: Neural Systems & Circuits
ISSN 2042-1001

Volume: 1;
Issue: 1;
Start page: 7;
Date: 2011;
Original page

ABSTRACT
Abstract Background Previous one-dimensional network modeling of the cerebellar granular layer has been successfully linked with a range of cerebellar cortex oscillations observed in vivo. However, the recent discovery of gap junctions between Golgi cells (GoCs), which may cause oscillations by themselves, has raised the question of how gap-junction coupling affects GoC and granular-layer oscillations. To investigate this question, we developed a novel two-dimensional computational model of the GoC-granule cell (GC) circuit with and without gap junctions between GoCs. Results Isolated GoCs coupled by gap junctions had a strong tendency to generate spontaneous oscillations without affecting their mean firing frequencies in response to distributed mossy fiber input. Conversely, when GoCs were synaptically connected in the granular layer, gap junctions increased the power of the oscillations, but the oscillations were primarily driven by the synaptic feedback loop between GoCs and GCs, and the gap junctions did not change oscillation frequency or the mean firing rate of either GoCs or GCs. Conclusion Our modeling results suggest that gap junctions between GoCs increase the robustness of cerebellar cortex oscillations that are primarily driven by the feedback loop between GoCs and GCs. The robustness effect of gap junctions on synaptically driven oscillations observed in our model may be a general mechanism, also present in other regions of the brain.

Tango Jona
Tangokurs Rapperswil-Jona

     Save time & money - Smart Internet Solutions