Academic Journals Database
Disseminating quality controlled scientific knowledge

Room temperature redox reaction by oxide ion migration at carbon/Gd-doped CeO2 heterointerface probed by an in situ hard x-ray photoemission and soft x-ray absorption spectroscopies

Author(s): Takashi Tsuchiya, Shogo Miyoshi, Yoshiyuki Yamashita, Hideki Yoshikawa, Kazuya Terabe, Keisuke Kobayashi and Shu Yamaguchi

Journal: Science and Technology of Advanced Materials
ISSN 1468-6996

Volume: 14;
Issue: 4;
Start page: 045001;
Date: 2013;
Original page

In situ hard x-ray photoemission spectroscopy (HX-PES) and soft x-ray absorption spectroscopy (SX-XAS) have been employed to investigate a local redox reaction at the carbon/Gd-doped CeO2 (GDC) thin film heterointerface under applied dc bias. In HX-PES, Ce3d and O1s core levels show a parallel chemical shift as large as 3.2 eV, corresponding to the redox window where ionic conductivity is predominant. The window width is equal to the energy gap between donor and acceptor levels of the GDC electrolyte. The Ce M-edge SX-XAS spectra also show a considerable increase of Ce3+ satellite peak intensity, corresponding to electrochemical reduction by oxide ion migration. In addition to the reversible redox reaction, two distinct phenomena by the electrochemical transport of oxide ions are observed as an irreversible reduction of the entire oxide film by O2 evolution from the GDC film to the gas phase, as well as a vigorous precipitation of oxygen gas at the bottom electrode to lift off the GDC film. These in situ spectroscopic observations describe well the electrochemical polarization behavior of a metal/GDC/metal capacitor-like two-electrode cell at room temperature.
Affiliate Program      Why do you need a reservation system?