Academic Journals Database
Disseminating quality controlled scientific knowledge

Simulating the vegetation response to abrupt climate changes under glacial conditions with the ORCHIDEE/IPSL models

ADD TO MY LIST
 
Author(s): M.-N. Woillez | M. Kageyama | N. Combourieu-Nebout | G. Krinner

Journal: Biogeosciences Discussions
ISSN 1810-6277

Volume: 9;
Issue: 9;
Start page: 12895;
Date: 2012;
VIEW PDF   PDF DOWNLOAD PDF   Download PDF Original page

ABSTRACT
The last glacial period has been punctuated by two types of abrupt climatic events, the Dansgaard-Oeschger (DO) and Heinrich (HE) events. These events, recorded in Greenland ice and in marine sediments, involved changes in the Atlantic Meridional Overturning Circulation (AMOC) and led to major changes in the terrestrial biosphere. Here we use the dynamical global vegetation model ORCHIDEE to simulate the response of vegetation to abrupt changes in the AMOC strength. To do so, we force ORCHIDEE off-line with outputs from the IPSL_CM4 general circulation model, in which we have forced the AMOC to change by adding freshwater fluxes in the North Atlantic. We investigate the impact of a collapse and recovery of the AMOC, at different rates, and focus on Western Europe, where many pollen records are available to compare with. The impact of an AMOC collapse on the European mean temperatures and precipitations simulated by the GCM is relatively small but sufficient to drive an important regression of forests and expansion of grasses in ORCHIDEE, in qualitative agreement with pollen data for an HE event. On the contrary, a run with a rapid shift of the AMOC to an hyperactive state of 30 Sv, mimicking the warming phase of a DO event, does not exhibit a strong impact on the European vegetation compared to the glacial control state. For our model, simulating the impact of an HE event thus appears easier than simulating the abrupt transition towards the interstadial phase of a DO. For both a collapse or a recovery of the AMOC the vegetation starts to respond to climatic changes immediately but reaches equilibrium about 200 yr after the climate equilibrates, suggesting a possible bias in the climatic reconstructions based on pollen records, which assume equilibrium between climate and vegetation. However, our study does not take into account vegetation feedbacks on the atmosphere.
Why do you need a reservation system?      Save time & money - Smart Internet Solutions