Academic Journals Database
Disseminating quality controlled scientific knowledge

Small scale spatial heterogeneity of soil respiration in an old growth temperate deciduous forest

ADD TO MY LIST
 
Author(s): A. Jordan | G. Jurasinski | S. Glatzel

Journal: Biogeosciences Discussions
ISSN 1810-6277

Volume: 6;
Issue: 5;
Start page: 9977;
Date: 2009;
VIEW PDF   PDF DOWNLOAD PDF   Download PDF Original page

ABSTRACT
The large scale spatial heterogeneity of soil respiration caused by differences in site conditions is quite well understood. However, comparably little is known about the micro scale heterogeneity within forest ecosystems on homogeneous soils. Forest age, soil texture, topographic position, micro topography and stand structure may influence soil respiration considerably within short distance. In the present study within site spatial heterogeneity of soil respiration has been evaluated. To do so, an improvement of available techniques for interpolating soil respiration data via kriging was undertaken. Soil respiration was measured with closed chambers biweekly from April 2005 to April 2006 using a nested design (a set of stratified random plots, supplemented by 2 small and 2 large nested groupings) in an unmanaged, beech dominated old growth forest in Central Germany (Hainich, Thuringia). A second exclusive randomized design was established in August 2005 and continually sampled biweekly until July 2007. The average soil respiration values from the random plots were standardized by modeling soil respiration data at defined soil temperature and soil moisture values. By comparing sampling points as well as by comparing kriging results based on various sampling point densities, we found that the exclusion of local outliers was of great importance for the reliability of the estimated fluxes. Most of this information would have been missed without the nested groupings. The extrapolation results slightly improved when additional parameters like soil temperature and soil moisture were included in the extrapolation procedure. Semivariograms solely calculated from soil respiration data show a broad variety of autocorrelation distances (ranges) from a few centimeters up to a few tens of meters. The combination of randomly distributed plots with nested groupings plus the inclusion of additional relevant parameters like soil temperature and soil moisture data permits an improved estimation of the range of soil respiration, which is a prerequisite for reliable interpolated maps of soil respiration.
Why do you need a reservation system?      Affiliate Program