Academic Journals Database
Disseminating quality controlled scientific knowledge

Spacelike Singularities and Hidden Symmetries of Gravity

ADD TO MY LIST
 
Author(s): Henneaux Marc | Persson Daniel | Spindel Philippe

Journal: Living Reviews in Relativity
ISSN 1433-8351

Volume: 11;
Start page: 1;
Date: 2008;
Original page

Keywords: hidden symmetries | duality | Kac-Moody algebras

ABSTRACT
We review the intimate connection between (super-)gravity close to a spacelike singularity (the “BKL-limit”) and the theory of Lorentzian Kac-Moody algebras. We show that in this limit the gravitational theory can be reformulated in terms of billiard motion in a region of hyperbolic space, revealing that the dynamics is completely determined by a (possibly infinite) sequence of reflections, which are elements of a Lorentzian Coxeter group. Such Coxeter groups are the Weyl groups of infinite-dimensional Kac-Moody algebras, suggesting that these algebras yield symmetries of gravitational theories. Our presentation is aimed to be a self-contained and comprehensive treatment of the subject, with all the relevant mathematical background material introduced and explained in detail. We also review attempts at making the infinite-dimensional symmetries manifest, through the construction of a geodesic sigma model based on a Lorentzian Kac-Moody algebra. An explicit example is provided for the case of the hyperbolic algebra E_10, which is conjectured to be an underlying symmetry of M-theory. Illustrations of this conjecture are also discussed in the context of cosmological solutions to eleven-dimensional supergravity.
Affiliate Program      Why do you need a reservation system?