Academic Journals Database
Disseminating quality controlled scientific knowledge

Thermal Properties of Carbon Nanotube–Copper Composites for Thermal Management Applications

ADD TO MY LIST
 
Author(s): Chu Ke | Guo Hong | Jia Chengchang | Yin Fazhang | Zhang Ximin | Liang Xuebing | Chen Hui

Journal: Nanoscale Research Letters
ISSN 1931-7573

Volume: 5;
Issue: 5;
Start page: 868;
Date: 2010;
Original page

Keywords: Metal–matrix composites | Carbon nanotubes | Spark plasma sintering | Thermal conductivity

ABSTRACT
Abstract Carbon nanotube–copper (CNT/Cu) composites have been successfully synthesized by means of a novel particles-compositing process followed by spark plasma sintering (SPS) technique. The thermal conductivity of the composites was measured by a laser flash technique and theoretical analyzed using an effective medium approach. The experimental results showed that the thermal conductivity unusually decreased after the incorporation of CNTs. Theoretical analyses revealed that the interfacial thermal resistance between the CNTs and the Cu matrix plays a crucial role in determining the thermal conductivity of bulk composites, and only small interfacial thermal resistance can induce a significant degradation in thermal conductivity for CNT/Cu composites. The influence of sintering condition on the thermal conductivity depended on the combined effects of multiple factors, i.e. porosity, CNTs distribution and CNT kinks or twists. The composites sintered at 600°C for 5 min under 50 MPa showed the maximum thermal conductivity. CNT/Cu composites are considered to be a promising material for thermal management applications.
Why do you need a reservation system?      Affiliate Program