Academic Journals Database
Disseminating quality controlled scientific knowledge

The use of quartz crystal microbalance with dissipation (QCM-D) for studying nanoparticle-induced platelet aggregation

ADD TO MY LIST
 
Author(s): Santos-Martinez MJ | Inkielewicz-Stepniak I | Medina C | Rahme K | D'Arcy DM | Fox D | Holmes JD | Zhang H | Radomski MW

Journal: International Journal of Nanomedicine
ISSN 1176-9114

Volume: 2012;
Issue: default;
Start page: 243;
Date: 2012;
Original page

ABSTRACT
Maria Jose Santos-Martinez1–3, Iwona Inkielewicz-Stepniak1,4, Carlos Medina1, Kamil Rahme5,6, Deirdre M D'Arcy1, Daniel Fox3, Justin D Holmes3,5, Hongzhou Zhang3, Marek Witold Radomski3,51School of Pharmacy and Pharmaceutical Sciences, 2School of Medicine, 3Center for Research on Adaptive Nanostructures and Nanodevices, Trinity College Dublin, Dublin, Ireland; 4Department of Medicinal Chemistry, Medical University of Gdansk, Gdansk, Poland; 5Materials and Supercritical Fluids Group, Department of Chemistry and the Tyndall National Institute, University College Cork, Cork, Ireland; 6Department of Sciences, Faculty of Natural and Applied Science, Notre Dame University, Zouk Mosbeh, LebanonAbstract: Interactions between blood platelets and nanoparticles have both pharmacological and toxicological significance and may lead to platelet activation and aggregation. Platelet aggregation is usually studied using light aggregometer that neither mimics the conditions found in human microvasculature nor detects microaggregates. A new method for the measurement of platelet microaggregation under flow conditions using a commercially available quartz crystal microbalance with dissipation (QCM-D) has recently been developed. The aim of the current study was to investigate if QCM-D could be used for the measurement of nanoparticle-platelet interactions. Silica, polystyrene, and gold nanoparticles were tested. The interactions were also studied using light aggregometry and flow cytometry, which measured surface abundance of platelet receptors. Platelet activation was imaged using phase contrast and scanning helium ion microscopy. QCM-D was able to measure nanoparticle-induced platelet microaggregation for all nanoparticles tested at concentrations that were undetectable by light aggregometry and flow cytometry. Microaggregates were measured by changes in frequency and dissipation, and the presence of platelets on the sensor surface was confirmed and imaged by phase contrast and scanning helium ion microscopy.Keywords: platelet aggregation, nanoparticles, light aggregometer, quartz crystal microbalance with dissipation, scanning helium ion microscopy
Affiliate Program     

Tango Rapperswil
Tango Rapperswil