Academic Journals Database
Disseminating quality controlled scientific knowledge

What controls biological productivity in coastal upwelling systems? Insights from a comparative modeling study

ADD TO MY LIST
 
Author(s): Z. Lachkar | N. Gruber

Journal: Biogeosciences Discussions
ISSN 1810-6277

Volume: 8;
Issue: 3;
Start page: 5617;
Date: 2011;
VIEW PDF   PDF DOWNLOAD PDF   Download PDF Original page

ABSTRACT
The magnitude of the biological productivity in Eastern Boundary Upwelling Systems (EBUS) is traditionally viewed as directly reflecting the upwelling intensity. Yet, different EBUS show different sensitivities of productivity to upwelling-favorable winds (Carr and Kearns, 2003). Here, using a comparative modeling study of the California Current System (California CS) and Canary Current System (Canary CS), we show how physical and environmental factors, such as light, temperature and cross-shore circulation modulate the response of biological productivity to upwelling strength. To this end, we made a series of eddy-resolving simulations of the California CS and Canary CS using the Regional Ocean Modeling System (ROMS), coupled to a nitrogen based Nutrient-Phytoplankton-Zooplankton-Detritus (NPZD) ecosystem model. We find the nutrient content of the euphotic zone to be 20 % smaller in the Canary CS relative to the California CS. Yet, the biological productivity is 50 % smaller in the latter. This is due to: (1) a faster nutrient-replete growth in the Canary CS relative to the California CS, related to a more favorable light and temperature conditions in the Canary CS, and (2) the longer nearshore water residence times in the Canary CS which lead to larger buildup of biomass in the upwelling zone, thereby enhancing the productivity. The longer residence times in the Canary CS appear to be associated with the wider continental shelves and the lower eddy activity characterizing this upwelling system. This results in a weaker offshore export of nutrients and organic matter, thereby increasing local nutrient recycling and enhancing the coupling between new and export production in the Northwest African system. Our results suggest that climate change induced perturbations such as upwelling favorable wind intensification might lead to contrasting biological responses in the California CS and the Canary CS, with major implications for the biogeochemical cycles and fisheries in these two ecosystems.
Save time & money - Smart Internet Solutions     

Tango Jona
Tangokurs Rapperswil-Jona