Academic Journals Database
Disseminating quality controlled scientific knowledge

The wildland fire emission inventory: western United States emission estimates and an evaluation of uncertainty

ADD TO MY LIST
 
Author(s): S. P. Urbanski | W. M. Hao | B. Nordgren

Journal: Atmospheric Chemistry and Physics
ISSN 1680-7316

Volume: 11;
Issue: 24;
Start page: 12973;
Date: 2011;
VIEW PDF   PDF DOWNLOAD PDF   Download PDF Original page

ABSTRACT
Biomass burning emission inventories serve as critical input for atmospheric chemical transport models that are used to understand the role of biomass fires in the chemical composition of the atmosphere, air quality, and the climate system. Significant progress has been achieved in the development of regional and global biomass burning emission inventories over the past decade using satellite remote sensing technology for fire detection and burned area mapping. However, agreement among biomass burning emission inventories is frequently poor. Furthermore, the uncertainties of the emission estimates are typically not well characterized, particularly at the spatio-temporal scales pertinent to regional air quality modeling. We present the Wildland Fire Emission Inventory (WFEI), a high resolution model for non-agricultural open biomass burning (hereafter referred to as wildland fires, WF) in the contiguous United States (CONUS). The model combines observations from the MODerate Resolution Imaging Spectroradiometer (MODIS) sensors on the Terra and Aqua satellites, meteorological analyses, fuel loading maps, an emission factor database, and fuel condition and fuel consumption models to estimate emissions from WF. WFEI was used to estimate emissions of CO (ECO) and PM2.5 (EPM2.5) for the western United States from 2003–2008. The uncertainties in the inventory estimates of ECO and EPM2.5 (uECO and uEPM2.5, respectively) have been explored across spatial and temporal scales relevant to regional and global modeling applications. In order to evaluate the uncertainty in our emission estimates across multiple scales we used a figure of merit, the half mass uncertainty, ũEX (where X = CO or PM2.5), defined such that for a given aggregation level 50% of total emissions occurred from elements with uEX ũEX. The sensitivity of the WFEI estimates of ECO and EPM2.5 to uncertainties in mapped fuel loading, fuel consumption, burned area and emission factors have also been examined. The estimated annual, domain wide ECO ranged from 436 Gg yr−1 in 2004 to 3107 Gg yr−1 in 2007. The extremes in estimated annual, domain wide EPM2.5 were 65 Gg yr−1 in 2004 and 454 Gg yr−1 in 2007. Annual WF emissions were a significant share of total emissions from non-WF sources (agriculture, dust, non-WF fire, fuel combustion, industrial processes, transportation, solvent, and miscellaneous) in the western United States as estimated in a national emission inventory. In the peak fire year of 2007, WF emissions were ~20% of total (WF + non-WF) CO emissions and ~39% of total PM2.5 emissions. During the months with the greatest fire activity, WF accounted for the majority of total CO and PM2.5 emitted across the study region. Uncertainties in annual, domain wide emissions was 28% to 51% for CO and 40% to 65% for PM2.5. Sensitivity of ũECO and ũEPM2.5 to the emission model components depended on scale. At scales relevant to regional modeling applications (Δx = 10 km, Δt = 1 day) WFEI estimates 50% of total ECO with an uncertainty

Tango Rapperswil
Tango Rapperswil

     Save time & money - Smart Internet Solutions