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ABSTRACT. We prove the existence of two-dimensional good lattice points in

thick multiplicative subgroups modulo p.
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1. Introduction

Let p ≥ 3 be a prime number. Take an integer a such that 1 ≤ a ≤ p − 1.
Consider a sequence of points

ξx =

(

x

p
,

{

ax

p

})

∈ [0, 1]2, x = 0, 1, 2, . . . , p− 1. (1)

Let

Np(γ1, γ2) = #{x : 0 ≤ x < p, ξx ∈ [0, γ1]× [0, γ2]}
and let

Dp(a) = sup
γ1, γ2∈[0,1]

|Np(γ1, γ2)− γ1γ2p|

be the discrepancy of the set (1).

In [1] G. Larcher proved a series of results on the existence of well-distributed
sets of the form (1). For example, he proved the existence of a ∈ [0, 1, . . . , p− 1]
such that

Dp(a) ≤ c log p log log p
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with an absolute constant c.

In the present paper we generalize this result.

In the sequel Z∗
p denotes the multiplicative group of residues modulo p. U de-

notes a multiplicative subgroup of Z∗
p and ‖·‖ denotes the distance to the nearest

integer.

For 1 ≤ a < p we need the continued fraction expansion

a

p
=

1

b1(a) +
1

b2(a) + · · ·+ 1

bl(a)

, l = l(a). (2)Theorem 1. Let p be prime, U be a multiplicative subgroup in Z∗
p. For v 6= 0

we consider the set R = v · U and let

#R ≥ 105p7/8 log3/2 p.

Then for at least a half of elements a ∈ R all partial quotients bj(a) in the

continued fraction expansion (2) are less than [16 log p].

Theorem 1 improves a result from [3].Theorem 2. Let p be prime, U be a multiplicative subgroup in Z∗
p. For v 6= 0

we consider the set R = v · U and let

#R ≥ 108p7/8 log5/2 p.

Then there exists an element a ∈ R, a/p = [b1, b2, . . . , bl], bi = bi(a), l = l(a)
with l

∑

i=1

bi ≤ 500 log p log log p.

It is well known (see [4]) that

Dp(a) ≪
∑

1≤i≤l(a)

bi(a).

So we immediately obtain the followingCorollary. Under the conditions of Theorem 2 there exists an element a ∈ R
such that

Dp(a) ≪ log p log log p.

We do not calculate optimal constants in our results. Of course constants 106

and 108 may be reduced.
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2. Character sums

Let p be prime, 1 < t ≤ p, k =

⌈

√

2p
t

⌉

, j =
⌈

log2
p
k

⌉

. Define rectangles

Π0 = [1, k]× [1, k],
Π1 = [k + 1, 2k]× [1, k/2],
Π2 = [2k + 1, 4k]× [1, k/4],
· · · ,
Πν = [2ν−1k + 1, 2νk]× [1, k/2ν],
· · · ;
Π−1 = [1, k/2]× [k + 1, 2k],
Π−2 = [1, k/4]× [2k + 1, 4k],
· · · ,
Π−ν = [1, k/2ν]× [2ν−1k + 1, 2νk],
· · · ,

and let Πt = ∪j
i=−jΠi, so Πt consists of ≤ 2 log2 p rectangles Πi. It is clear that

{

(x, y) ∈ Z2 | 1 ≤ x < p, 1 ≤ y < p, xy ≤ p/t
}

⊂ Πt. (3)

Moreover, for different ν and µ we have

Πν ∩Πµ = ∅.Lemma 1. Let p be prime, c ≥ 1, k =
√

2p
c , χ be a non-principal character to

prime modulo p. Then
∣

∣

∣

∣

∣

∣

∑

(x,u)∈Πc

χ(x)χ(u)

∣

∣

∣

∣

∣

∣

≤ 10000p
7
8 log2 p

/√
c.

P r o o f. Dividing summation area into parts, we obtain
∣

∣

∣

∣

∣

∣

∑

(x,u)∈Πc

χ(x)χ(u)

∣

∣

∣

∣

∣

∣

≤
j

∑

i=−j

∣

∣

∣

∣

∣

∣

∑

(x,u)∈Πi

χ(x)χ(u)

∣

∣

∣

∣

∣

∣

.

Let h denote the height of rectangle Πi and w denote the width. Then hw ≤ k2.

We will use following Burgess’ result (see [4] for details) �Theorem. Let χ be a non-principal character to prime modulo. Then
∣

∣

∣

∣

∣

∣

∑

1≤x≤N

χ(x)

∣

∣

∣

∣

∣

∣

≤ 30N1− 1
r p

r+1

4r2 (log p)
1
r.

Here r is an arbitrary positive integer.
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Taking r = 2 in the Burgess’ theorem we obtain
∣

∣

∣

∣

∣

∣

∑

(x,u)∈Pi

χ(x)χ(u)

∣

∣

∣

∣

∣

∣

≤ 900
√
hwp

3
8 log p ≤ 900kp

3
8 log p = 900

√

2p

c
p

3
8 log p.

Since there is only ≤ 2 log2 p rectangles Πi
∣

∣

∣

∣

∣

∣

∑

(x,u)∈Πc

χ(x)χ(u)

∣

∣

∣

∣

∣

∣

≤ 10000p
7
8 log2 p

/√
c

and the lemma follows.

3. Continued fractions

We will use two lemmas about continued fractions (see [5]).Lemma A. If pn

qn
6= α is the nth convergent to α, then

1

qn(qn + qn+1)
<

∣

∣

∣

∣

α− pn
qn

∣

∣

∣

∣

<
1

qnqn+1
.Lemma B. If α ∈ R, a

b ∈ Q, (a, b) = 1 and
∣

∣

∣
α− a

b

∣

∣

∣
<

1

2b2
,

then a
b is a convergent to α.

4. Proof of Theorem 1

Let t = 16 log p. Consider the sum

S(a) =
∑

δp(axy
∗ − 1),

where

δp(x) =

{

1, x ≡ 0 (mod p),

0, x 6≡ 0 (mod p),

y∗ ∈ Z∗
p is defined from

yy∗ ≡ 1 (mod p),

and the summation is over all pairs (x, |y|) ∈ Πt.
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If S(a) = 0, then by (3) for all 1 ≤ x, 1 ≤ |y| < p, x|y| ≤ p/t we have

ax− y 6≡ 0 (mod p).

Hence if 









ax− y ≡ 0 (mod p),

1 ≤ x < p,

1 ≤ |y| < p,

then

x|y| >
p

t
. (4)

In particular (4) holds for y = ±
∥

∥

∥

ax
p

∥

∥

∥
p. Therefore for each 1 ≤ x < p we have

∥

∥

∥

∥

ax

p

∥

∥

∥

∥

>
1

xt
. (5)

Using Lemma A we obtain
∥

∥

∥

∥

axk−1

p

∥

∥

∥

∥

<
1

xk−1bk(a)
, (6)

where xk−1 is the denominator of (k− 1)th convergent to a/p. From (5) and (6)
we see that bk(a) < t and all continued fraction coefficients of a/p are less than t.

Now we express S(a) as a sum

S(a) =
1

p− 1

∑

χ (mod p)

∑

(x,|y|)∈Πt

χ(a)χ(x)χ(y),

where the first summation is over all characters to modulo p. Consider the sum
S =

∑

a∈R S(a), then

S =
#R

p− 1

∑

χ;U

∑

(x,|y|)∈Πt

χ(v)χ(x)χ(y),

where χ;U denotes summation over all characters to prime modulo p trivial
on U. It is now clear that

|S| ≤ #R
4p log p

(p− 1)t
+ 2max

χ 6=1

∣

∣

∣

∣

∣

∣

∑

(x,y)∈Πt

χ(x)χ(y)

∣

∣

∣

∣

∣

∣

.

Using Lemma 1 we obtain the following estimate

|S| ≤ #R

4
+ 20000p

7
8 log2 p

/
√
t,

therefore |S|
#R

<
1

2
,

and the theorem follows.
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5. Proof of Theorem 2

Let c be a positive integer. Define

B(c) =

{

(a, x)

∣

∣

∣

∣

∣

∥

∥

∥

∥

ax

p

∥

∥

∥

∥

<
1

cx
, a ∈ R, 1 ≤ x < p

}

Let B(c, c′) = B(c)�B(c′). Also we define a function fa(x) by the condition

fa(x) =

{

c if (a, x) ∈ B(c, c+ 1) for some c ∈ N,

0, otherwise.

Consider the sum
Sa =

p−1
∑

x=1

fa(x).

Let fa(x) = c. Then
1

(c+ 1)x
≤

∥

∥

∥

∥

ax

p

∥

∥

∥

∥

<
1

cx
.

If x is the denominator of some convergent to a/p, then by Lemma A

1

(bn+1 + 2)x
≤

∥

∥

∥

∥

ax

p

∥

∥

∥

∥

<
1

bn+1x
,

therefore either bn+1 = c, or bn+1 = c− 1. So we see that

Sa ≥
∑

bi +
∑

δi,

where δi ∈ {−1, 0}.
Therefore

Sa ≥
l

∑

i=1

bi − 5 log p,

where 5 log p is an upper bound for the continued fraction’s length.

Let Ω be the subset in R such that all partial quotients to elements of
the form a/p with a ∈ Ω are less than t = [16 log p]. Hence, by Theorem 1,
#Ω > #R/2.

Suppose that a ∈ Ω. If fa(x) = c, c > 1, then
∥

∥

∥

∥

ax

p

∥

∥

∥

∥

<
1

cx
.

So there exists an element b with
∣

∣

∣

∣

b

x
− a

p

∣

∣

∣

∣

<
1

cx2
.
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By Lemma B we have that b/x = pν/qν is a convergent to a/p. Because
qν+1 ≤ (bν+1(a) + 1)qν by the left inequality from Lemma A we see that

1

q2ν(bν+1(a) + 2)
≤ 1

qν(qν + qν+1)
≤

∣

∣

∣

∣

pν
qν

− a

p

∣

∣

∣

∣

=

∣

∣

∣

∣

b

x
− a

p

∣

∣

∣

∣

<
1

cx2
≤ 1

cq2ν
.

So c < bν+1(a) + 2 for some ν. It follows that c ≤ bν+1(a) + 1. As bν+1(a) < t
we see that c ≤ t. So if a ∈ Ω, then fa(x) ≤ t. Hence by the partial summation

∑

a∈Ω

Sa ≤
∑

c≤t

c ·#B(c, c+ 1) ≤
∑

c≤t

#B(c).

Let us estimate #B(c).

It is clear that
#B(c) ≤ 2 ·#

{

(b, x) | b < p

cx
, b ∈ x · R

}

(7)

≤ 2 ·# {(b, x) ∈ Πc | b ∈ x · R}

= 2
#R

p− 1

∑

χ;U

∑

(x,u)∈Πc

χ(v)χ(u)χ(x),

where the
∑

χ;U denotes the summation over characters χ trivial on U .

Note #U |(p− 1) and there exist exactly (p− 1)/#U trivial on U characters.
Thus

#B(c) ≤ 2
#R

p− 1
#Πc + 4max

χ

∣

∣

∣

∣

∣

∣

∑

(x,u)∈Πc

χ(u)χ(x)

∣

∣

∣

∣

∣

∣

,

where maximum is taken over all non-principal characters to modulo p .
We can now use Lemma 1 to obtain an estimate

#B(c) ≤ 4
#R

p− 1

p

c
log p+ 40000p

7
8 log2 p

/√
c.

Therefore
∑

a∈Ω

Sa ≤ 190 ·#R log p log log p+ 8 · 106p7/8 log5/2 p.

Dividing by #Ω > #R/2 we get

1

#Ω

∑

a∈Ω

Sa ≤ 400 log p log log p

because of #R ≥ 108p7/8 log5/2 p. Hence there exists an element a in Ω such
that Sa ≤ 400 log p log log p. Therefore there exists an element a in Ω such that

∑

bi(a) ≤ 500 log p log log p.

Theorem 2 is proved.
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