Academic Journals Database
Disseminating quality controlled scientific knowledge

Asymptotics of the invariant measure in mean field models with jumps

Author(s): Vivek Shripad Borkar | Rajesh Sundaresan

Journal: Stochastic Systems
ISSN 1946-5238

Volume: 2;
Issue: 2;
Start page: 322;
Date: 2012;
Original page

Keywords: Decoupling approximation | fluid limit | invariant measure | McKean-Vlasov equation | mean field limit | small noise limit | stationary measure | stochastic Liouville equation

We consider the asymptotics of the invariant measure for the process of the empirical spatial distribution of N coupled Markov chains in the limit of a large number of chains. Each chain reflects the stochastic evolution of one particle. The chains are coupled through the dependence of the transition rates on this spatial distribution of particles in the various states. Our model is a caricature for medium access interactions in wireless local area networks. It is also applicable to the study of spread of epidemics in a network. The limiting process satisfies a deterministic ordinary differential equation called the McKean-Vlasov equation. When this differential equation has a unique globally asymptotically stable equilibrium, the spatial distribution asymptotically concentrates on this equilibrium.More generally, its limit points are supported on a subset of the ω-limit sets of the McKean-Vlasov equation. Using a control-theoretic approach, we examine the question of large deviations of the invariant measure from this limit.

HR software für Hotellerie

Automatische Erstellung
von Personaldokumente
und Anmeldungen bei Behörden


Tango Rapperswil
Tango Rapperswil