Academic Journals Database
Disseminating quality controlled scientific knowledge

Audio Query by Example Using Similarity Measures between Probability Density Functions of Features

ADD TO MY LIST
 
Author(s): Marko Helén | Tuomas Virtanen

Journal: EURASIP Journal on Audio, Speech, and Music Processing
ISSN 1687-4714

Volume: 2010;
Date: 2010;
Original page

ABSTRACT
This paper proposes a query by example system for generic audio. We estimate the similarity of the example signal and the samples in the queried database by calculating the distance between the probability density functions (pdfs) of their frame-wise acoustic features. Since the features are continuous valued, we propose to model them using Gaussian mixture models (GMMs) or hidden Markov models (HMMs). The models parametrize each sample efficiently and retain sufficient information for similarity measurement. To measure the distance between the models, we apply a novel Euclidean distance, approximations of Kullback-Leibler divergence, and a cross-likelihood ratio test. The performance of the measures was tested in simulations where audio samples are automatically retrieved from a general audio database, based on the estimated similarity to a user-provided example. The simulations show that the distance between probability density functions is an accurate measure for similarity. Measures based on GMMs or HMMs are shown to produce better results than that of the existing methods based on simpler statistics or histograms of the features. A good performance with low computational cost is obtained with the proposed Euclidean distance.
RPA Switzerland

RPA Switzerland

Robotic process automation

    

Tango Rapperswil
Tango Rapperswil