Academic Journals Database
Disseminating quality controlled scientific knowledge

Climate change impacts on sea-air fluxes of CO2 in three Arctic seas: a sensitivity study using earth observation

Author(s): P. E. Land | J. D. Shutler | R. D. Cowling | D. K. Woolf | P. Walker | H. S. Findlay | R. C. Upstill-Goddard | C. J. Donlon

Journal: Biogeosciences Discussions
ISSN 1810-6277

Volume: 9;
Issue: 9;
Start page: 12377;
Date: 2012;
VIEW PDF   PDF DOWNLOAD PDF   Download PDF Original page

During 2008 and 2009 we applied coincident Earth observation data collected from multiple sensors (RA2, AATSR and MERIS, mounted on the European Space Agency satellite Envisat) to characterise environmental conditions and net sea-air fluxes of CO2 in three Arctic seas (Greenland, Barents, Kara) to assess net CO2 sink sensitivity due to changes in temperature, salinity and sea ice duration arising from future climate scenarios. During the study period the Greenland and Barents Seas were net sinks for atmospheric CO2, with sea-air fluxes of −34±13 and −13±6 Tg C yr−1, respectively and the Kara Sea was a weak net CO2 source with a sea-air flux of +1.5±1.1 Tg C yr−1. The combined net CO2 sea-air flux from all three was −45±18 Tg C yr−1. In a sensitivity analysis we varied temperature, salinity and sea ice duration. Variations in temperature and salinity led to modification of the transfer velocity, solubility and partial pressure of CO2 taking into account the resultant variations in alkalinity and dissolved organic carbon (DOC). Our results showed that warming had a strong positive effect on the annual net sea-air flux of CO2 (i.e. reducing the sink), freshening had a strong negative effect and reduced sea ice duration had a small but measurable positive effect. In the climate change scenario examined, the effects of warming in just over a decade of climate change up to 2020 outweighed the combined effects of freshening and reduced sea ice duration. Collectively these effects gave a net sea-air flux change of +3.5 Tg C in the Greenland Sea, +5.5 Tg C in the Barents Sea and +1.4 Tg C in the Kara Sea, reducing the Greenland and Barents sinks by 10% and 50% respectively, and increasing the weak Kara Sea source by 64%. Overall, the regional flux changed by +10.4 Tg C, reducing the regional sink by 23%. In terms of CO2 sink strength we conclude that the Barents Sea is the most susceptible of the three regions to the climate changes examined. Our results imply that the region will cease to be a net CO2 sink by 2060.

HR software für Hotellerie

Automatische Erstellung
von Personaldokumente
und Anmeldungen bei Behörden


Tango Jona
Tangokurs Rapperswil-Jona