Academic Journals Database
Disseminating quality controlled scientific knowledge

Clustering of Gene Expression Data Based on Shape Similarity

ADD TO MY LIST
 
Author(s): Hestilow Travis J | Huang Yufei

Journal: EURASIP Journal on Bioinformatics and Systems Biology
ISSN 1687-4145

Volume: 2009;
Issue: 1;
Start page: 195712;
Date: 2009;
Original page

ABSTRACT
A method for gene clustering from expression profiles using shape information is presented. The conventional clustering approaches such as K-means assume that genes with similar functions have similar expression levels and hence allocate genes with similar expression levels into the same cluster. However, genes with similar function often exhibit similarity in signal shape even though the expression magnitude can be far apart. Therefore, this investigation studies clustering according to signal shape similarity. This shape information is captured in the form of normalized and time-scaled forward first differences, which then are subject to a variational Bayes clustering plus a non-Bayesian (Silhouette) cluster statistic. The statistic shows an improved ability to identify the correct number of clusters and assign the components of cluster. Based on initial results for both generated test data and Escherichia coli microarray expression data and initial validation of the Escherichia coli results, it is shown that the method has promise in being able to better cluster time-series microarray data according to shape similarity.
RPA Switzerland

Robotic Process Automation Switzerland

    

Tango Rapperswil
Tango Rapperswil