Author(s): Jamal Ghasemi | Amard Afzalian | M.R. Karami Mollaei
Journal: Signal Processing : An International Journal
ISSN 1985-2339
Volume: 4;
Issue: 1;
Start page: 54;
Date: 2010;
Original page
Keywords: Speech | Voice Activity Detector | Singular Value
ABSTRACT
voice activity detector (VAD) is used to separate the speech data included parts from silence parts of the signal. In this paper a new VAD algorithm is represented on the basis of singular value decomposition. There are two sections to perform the feature vector extraction. In first section voiced frames are separated from unvoiced and silence frames. In second section unvoiced frames are silence frames. To perform the above sections, first, windowing the noisy signal then Hankel’s matrix is formed for each frame. The basis of statistical feature extraction of purposed system is slope of singular value curve related to each frame by using linear regression. It is shown that the slope of singular values curve per different SNRs in voiced frames is more than the other types and this property can be to achieve the goal the first part can be used. High similarity between feature vector of unvoiced and silence frame caused to approach for separation of the two categories above cannot be used. So in the second part, the frequency characteristics for identification of unvoiced frames from silent frames have been used. Simulation results show that high speed and accuracy are the advantages of the proposed system.
Journal: Signal Processing : An International Journal
ISSN 1985-2339
Volume: 4;
Issue: 1;
Start page: 54;
Date: 2010;
Original page
Keywords: Speech | Voice Activity Detector | Singular Value
ABSTRACT
voice activity detector (VAD) is used to separate the speech data included parts from silence parts of the signal. In this paper a new VAD algorithm is represented on the basis of singular value decomposition. There are two sections to perform the feature vector extraction. In first section voiced frames are separated from unvoiced and silence frames. In second section unvoiced frames are silence frames. To perform the above sections, first, windowing the noisy signal then Hankel’s matrix is formed for each frame. The basis of statistical feature extraction of purposed system is slope of singular value curve related to each frame by using linear regression. It is shown that the slope of singular values curve per different SNRs in voiced frames is more than the other types and this property can be to achieve the goal the first part can be used. High similarity between feature vector of unvoiced and silence frame caused to approach for separation of the two categories above cannot be used. So in the second part, the frequency characteristics for identification of unvoiced frames from silent frames have been used. Simulation results show that high speed and accuracy are the advantages of the proposed system.