Academic Journals Database
Disseminating quality controlled scientific knowledge

Complex-mediated microwave-assisted synthesis of polyacrylonitrile nanoparticles

Author(s): Trinath Biswal | Ramakanta Samal | Prafulla K Sahoo

Journal: Nanotechnology, Science and Applications
ISSN 1177-8903

Volume: 2010;
Issue: default;
Start page: 77;
Date: 2010;
Original page

Trinath Biswal, Ramakanta Samal, Prafulla K SahooDepartment of Chemistry, Utkal University, Vani Vihar, Bhubaneswar 751004, IndiaAbstract: The polymerization of acrylonitrile (AN) is efficiently, easily, and quickly achieved in the presence of trans-[Co(III)en2Cl2]Cl complex in a domestic microwave (MW) oven. MW irradiation notably promoted the polymerization reaction; this phenomenon is ascribed to the acceleration of the initiator, ammonium persulfate (APS), decomposition by microwave irradiation in the presence of [Co(III)en2Cl2]Cl. The conversion of monomer to the polymer was mostly excellent in gram scale. Irradiation at low power and time produced more homogeneous polymers with high molecular weight and low polydispersity when compared with the polymer formed by a conventional heating method. The interaction of reacting components was monitored by UV-visible spectrometer. The average molecular weight was derived by gel permeation chromatography (GPC), viscosity methods, and sound velocity by ultrasonic interferometer. The uniform and reduced molecular size was characterized by transmission electron microscopy, the diameter of polyacrylonitrile nanoparticles (PAN) being in the range 50–115 nm and 40–230 nm in microwave and conventional heating methods respectively. The surface morphology of PAN prepared by MW irradiation was characterized by scanning electron microscope (SEM). From the kinetic results, the rate of polymerization (Rp) was expressed as Rp = [AN]0.63 [APS]0.57 [complex (I)].0.88Keywords: microwave, complex catalyst, nanoparticle, kinetics
RPA Switzerland

Robotic Process Automation Switzerland


Tango Rapperswil
Tango Rapperswil